forked from david8862/keras-YOLOv3-model-set
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
327 lines (281 loc) · 17.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Retrain the YOLO model for your own dataset.
"""
import os, time, random, argparse
import numpy as np
import tensorflow.keras.backend as K
#from tensorflow.keras.utils import multi_gpu_model
from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, LearningRateScheduler, EarlyStopping, TerminateOnNaN, LambdaCallback
from tensorflow_model_optimization.sparsity import keras as sparsity
from yolo5.model import get_yolo5_train_model
from yolo5.data import yolo5_data_generator_wrapper, Yolo5DataGenerator
from yolo3.model import get_yolo3_train_model
from yolo3.data import yolo3_data_generator_wrapper, Yolo3DataGenerator
from yolo2.model import get_yolo2_train_model
from yolo2.data import yolo2_data_generator_wrapper, Yolo2DataGenerator
from common.utils import get_classes, get_anchors, get_dataset, optimize_tf_gpu
from common.model_utils import get_optimizer
from common.callbacks import EvalCallBack, CheckpointCleanCallBack, DatasetShuffleCallBack
# Try to enable Auto Mixed Precision on TF 2.0
os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1'
os.environ['TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_IGNORE_PERFORMANCE'] = '1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
optimize_tf_gpu(tf, K)
def main(args):
annotation_file = args.annotation_file
log_dir = os.path.join('logs', '000')
classes_path = args.classes_path
class_names = get_classes(classes_path)
num_classes = len(class_names)
anchors = get_anchors(args.anchors_path)
num_anchors = len(anchors)
# get freeze level according to CLI option
if args.weights_path:
freeze_level = 0
else:
freeze_level = 1
if args.freeze_level is not None:
freeze_level = args.freeze_level
# callbacks for training process
logging = TensorBoard(log_dir=log_dir, histogram_freq=0, write_graph=False, write_grads=False, write_images=False, update_freq='batch')
checkpoint = ModelCheckpoint(os.path.join(log_dir, 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5'),
monitor='val_loss',
mode='min',
verbose=1,
save_weights_only=False,
save_best_only=True,
period=1)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, mode='min', patience=10, verbose=1, cooldown=0, min_lr=1e-10)
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=50, verbose=1, mode='min')
checkpoint_clean = CheckpointCleanCallBack(log_dir, max_val_keep=5, max_eval_keep=2)
terminate_on_nan = TerminateOnNaN()
callbacks = [logging, checkpoint, reduce_lr, early_stopping, terminate_on_nan, checkpoint_clean]
# get train&val dataset
dataset = get_dataset(annotation_file)
if args.val_annotation_file:
val_dataset = get_dataset(args.val_annotation_file)
num_train = len(dataset)
num_val = len(val_dataset)
dataset.extend(val_dataset)
else:
val_split = args.val_split
num_val = int(len(dataset)*val_split)
num_train = len(dataset) - num_val
# assign multiscale interval
if args.multiscale:
rescale_interval = args.rescale_interval
else:
rescale_interval = -1 #Doesn't rescale
# model input shape check
input_shape = args.model_input_shape
assert (input_shape[0]%32 == 0 and input_shape[1]%32 == 0), 'model_input_shape should be multiples of 32'
# get different model type & train&val data generator
if args.model_type.startswith('scaled_yolo4_') or args.model_type.startswith('yolo5_'):
# Scaled-YOLOv4 & YOLOv5 entrance, use yolo5 submodule but now still yolo3 data generator
# TODO: create new yolo5 data generator to apply YOLOv5 anchor assignment
get_train_model = get_yolo5_train_model
data_generator = yolo5_data_generator_wrapper
# tf.keras.Sequence style data generator
#train_data_generator = Yolo5DataGenerator(dataset[:num_train], args.batch_size, input_shape, anchors, num_classes, args.enhance_augment, rescale_interval, args.multi_anchor_assign)
#val_data_generator = Yolo5DataGenerator(dataset[num_train:], args.batch_size, input_shape, anchors, num_classes, multi_anchor_assign=args.multi_anchor_assign)
tiny_version = False
elif args.model_type.startswith('yolo3_') or args.model_type.startswith('yolo4_'):
#if num_anchors == 9:
# YOLOv3 & v4 entrance, use 9 anchors
get_train_model = get_yolo3_train_model
data_generator = yolo3_data_generator_wrapper
# tf.keras.Sequence style data generator
#train_data_generator = Yolo3DataGenerator(dataset[:num_train], args.batch_size, input_shape, anchors, num_classes, args.enhance_augment, rescale_interval, args.multi_anchor_assign)
#val_data_generator = Yolo3DataGenerator(dataset[num_train:], args.batch_size, input_shape, anchors, num_classes, multi_anchor_assign=args.multi_anchor_assign)
tiny_version = False
elif args.model_type.startswith('tiny_yolo3_') or args.model_type.startswith('tiny_yolo4_'):
#elif num_anchors == 6:
# Tiny YOLOv3 & v4 entrance, use 6 anchors
get_train_model = get_yolo3_train_model
data_generator = yolo3_data_generator_wrapper
# tf.keras.Sequence style data generator
#train_data_generator = Yolo3DataGenerator(dataset[:num_train], args.batch_size, input_shape, anchors, num_classes, args.enhance_augment, rescale_interval, args.multi_anchor_assign)
#val_data_generator = Yolo3DataGenerator(dataset[num_train:], args.batch_size, input_shape, anchors, num_classes, multi_anchor_assign=args.multi_anchor_assign)
tiny_version = True
elif args.model_type.startswith('yolo2_') or args.model_type.startswith('tiny_yolo2_'):
#elif num_anchors == 5:
# YOLOv2 & Tiny YOLOv2 use 5 anchors
get_train_model = get_yolo2_train_model
data_generator = yolo2_data_generator_wrapper
# tf.keras.Sequence style data generator
#train_data_generator = Yolo2DataGenerator(dataset[:num_train], args.batch_size, input_shape, anchors, num_classes, args.enhance_augment, rescale_interval)
#val_data_generator = Yolo2DataGenerator(dataset[num_train:], args.batch_size, input_shape, anchors, num_classes)
tiny_version = False
else:
raise ValueError('Unsupported model type')
# prepare online evaluation callback
if args.eval_online:
eval_callback = EvalCallBack(args.model_type, dataset[num_train:], anchors, class_names, args.model_input_shape, args.model_pruning, log_dir, eval_epoch_interval=args.eval_epoch_interval, save_eval_checkpoint=args.save_eval_checkpoint, elim_grid_sense=args.elim_grid_sense)
callbacks.insert(-1, eval_callback) # add before checkpoint clean
# prepare train/val data shuffle callback
if args.data_shuffle:
shuffle_callback = DatasetShuffleCallBack(dataset)
callbacks.append(shuffle_callback)
# prepare model pruning config
pruning_end_step = np.ceil(1.0 * num_train / args.batch_size).astype(np.int32) * args.total_epoch
if args.model_pruning:
pruning_callbacks = [sparsity.UpdatePruningStep(), sparsity.PruningSummaries(log_dir=log_dir, profile_batch=0)]
callbacks = callbacks + pruning_callbacks
# prepare optimizer
optimizer = get_optimizer(args.optimizer, args.learning_rate, average_type=None, decay_type=None)
# support multi-gpu training
if args.gpu_num >= 2:
# devices_list=["/gpu:0", "/gpu:1"]
devices_list=["/gpu:{}".format(n) for n in range(args.gpu_num)]
strategy = tf.distribute.MirroredStrategy(devices=devices_list)
print ('Number of devices: {}'.format(strategy.num_replicas_in_sync))
with strategy.scope():
# get multi-gpu train model
model = get_train_model(args.model_type, anchors, num_classes, weights_path=args.weights_path, freeze_level=freeze_level, optimizer=optimizer, label_smoothing=args.label_smoothing, elim_grid_sense=args.elim_grid_sense, model_pruning=args.model_pruning, pruning_end_step=pruning_end_step)
else:
# get normal train model
model = get_train_model(args.model_type, anchors, num_classes, weights_path=args.weights_path, freeze_level=freeze_level, optimizer=optimizer, label_smoothing=args.label_smoothing, elim_grid_sense=args.elim_grid_sense, model_pruning=args.model_pruning, pruning_end_step=pruning_end_step)
model.summary()
# Transfer training some epochs with frozen layers first if needed, to get a stable loss.
initial_epoch = args.init_epoch
epochs = initial_epoch + args.transfer_epoch
print("Transfer training stage")
print('Train on {} samples, val on {} samples, with batch size {}, input_shape {}.'.format(num_train, num_val, args.batch_size, input_shape))
#model.fit_generator(train_data_generator,
model.fit_generator(data_generator(dataset[:num_train], args.batch_size, input_shape, anchors, num_classes, args.enhance_augment, rescale_interval, multi_anchor_assign=args.multi_anchor_assign),
steps_per_epoch=max(1, num_train//args.batch_size),
#validation_data=val_data_generator,
validation_data=data_generator(dataset[num_train:], args.batch_size, input_shape, anchors, num_classes, multi_anchor_assign=args.multi_anchor_assign),
validation_steps=max(1, num_val//args.batch_size),
epochs=epochs,
initial_epoch=initial_epoch,
#verbose=1,
workers=1,
use_multiprocessing=False,
max_queue_size=10,
callbacks=callbacks)
# Wait 2 seconds for next stage
time.sleep(2)
if args.decay_type or args.average_type:
# rebuild optimizer to apply learning rate decay or weights averager,
# only after unfreeze all layers
if args.decay_type:
callbacks.remove(reduce_lr)
if args.average_type == 'ema' or args.average_type == 'swa':
# weights averager need tensorflow-addons,
# which request TF 2.x and have version compatibility
import tensorflow_addons as tfa
callbacks.remove(checkpoint)
avg_checkpoint = tfa.callbacks.AverageModelCheckpoint(filepath=os.path.join(log_dir, 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5'),
update_weights=True,
monitor='val_loss',
mode='min',
verbose=1,
save_weights_only=False,
save_best_only=True,
period=1)
callbacks.insert(-1, avg_checkpoint) # add before checkpoint clean
steps_per_epoch = max(1, num_train//args.batch_size)
decay_steps = steps_per_epoch * (args.total_epoch - args.init_epoch - args.transfer_epoch)
optimizer = get_optimizer(args.optimizer, args.learning_rate, average_type=args.average_type, decay_type=args.decay_type, decay_steps=decay_steps)
# Unfreeze the whole network for further tuning
# NOTE: more GPU memory is required after unfreezing the body
print("Unfreeze and continue training, to fine-tune.")
if args.gpu_num >= 2:
with strategy.scope():
for i in range(len(model.layers)):
model.layers[i].trainable = True
model.compile(optimizer=optimizer, loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change
else:
for i in range(len(model.layers)):
model.layers[i].trainable = True
model.compile(optimizer=optimizer, loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change
print('Train on {} samples, val on {} samples, with batch size {}, input_shape {}.'.format(num_train, num_val, args.batch_size, input_shape))
#model.fit_generator(train_data_generator,
model.fit_generator(data_generator(dataset[:num_train], args.batch_size, input_shape, anchors, num_classes, args.enhance_augment, rescale_interval, multi_anchor_assign=args.multi_anchor_assign),
steps_per_epoch=max(1, num_train//args.batch_size),
#validation_data=val_data_generator,
validation_data=data_generator(dataset[num_train:], args.batch_size, input_shape, anchors, num_classes, multi_anchor_assign=args.multi_anchor_assign),
validation_steps=max(1, num_val//args.batch_size),
epochs=args.total_epoch,
initial_epoch=epochs,
#verbose=1,
workers=1,
use_multiprocessing=False,
max_queue_size=10,
callbacks=callbacks)
# Finally store model
if args.model_pruning:
model = sparsity.strip_pruning(model)
model.save(os.path.join(log_dir, 'trained_final.h5'))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Model definition options
parser.add_argument('--model_type', type=str, required=False, default='yolo3_mobilenet_lite',
help='YOLO model type: yolo3_mobilenet_lite/tiny_yolo3_mobilenet/yolo3_darknet/..., default=%(default)s')
parser.add_argument('--anchors_path', type=str, required=False, default=os.path.join('configs', 'yolo3_anchors.txt'),
help='path to anchor definitions, default=%(default)s')
parser.add_argument('--model_input_shape', type=str, required=False, default='416x416',
help = "Initial model image input shape as <height>x<width>, default=%(default)s")
parser.add_argument('--weights_path', type=str, required=False, default=None,
help = "Pretrained model/weights file for fine tune")
# Data options
parser.add_argument('--annotation_file', type=str, required=False, default='trainval.txt',
help='train annotation txt file, default=%(default)s')
parser.add_argument('--val_annotation_file', type=str, required=False, default=None,
help='val annotation txt file, default=%(default)s')
parser.add_argument('--val_split', type=float, required=False, default=0.1,
help = "validation data persentage in dataset if no val dataset provide, default=%(default)s")
parser.add_argument('--classes_path', type=str, required=False, default=os.path.join('configs', 'voc_classes.txt'),
help='path to class definitions, default=%(default)s')
# Training options
parser.add_argument('--batch_size', type=int, required=False, default=16,
help = "Batch size for train, default=%(default)s")
parser.add_argument('--optimizer', type=str, required=False, default='adam', choices=['adam', 'rmsprop', 'sgd'],
help = "optimizer for training (adam/rmsprop/sgd), default=%(default)s")
parser.add_argument('--learning_rate', type=float, required=False, default=1e-3,
help = "Initial learning rate, default=%(default)s")
parser.add_argument('--average_type', type=str, required=False, default=None, choices=[None, 'ema', 'swa', 'lookahead'],
help = "weights average type, default=%(default)s")
parser.add_argument('--decay_type', type=str, required=False, default=None, choices=[None, 'cosine', 'exponential', 'polynomial', 'piecewise_constant'],
help = "Learning rate decay type, default=%(default)s")
parser.add_argument('--transfer_epoch', type=int, required=False, default=20,
help = "Transfer training (from Imagenet) stage epochs, default=%(default)s")
parser.add_argument('--freeze_level', type=int,required=False, default=None, choices=[None, 0, 1, 2],
help = "Freeze level of the model in transfer training stage. 0:NA/1:backbone/2:only open prediction layer")
parser.add_argument('--init_epoch', type=int,required=False, default=0,
help = "Initial training epochs for fine tune training, default=%(default)s")
parser.add_argument('--total_epoch', type=int,required=False, default=250,
help = "Total training epochs, default=%(default)s")
parser.add_argument('--multiscale', default=False, action="store_true",
help='Whether to use multiscale training')
parser.add_argument('--rescale_interval', type=int, required=False, default=10,
help = "Number of iteration(batches) interval to rescale input size, default=%(default)s")
parser.add_argument('--enhance_augment', type=str, required=False, default=None, choices=[None, 'mosaic'],
help = "enhance data augmentation type (None/mosaic), default=%(default)s")
parser.add_argument('--label_smoothing', type=float, required=False, default=0,
help = "Label smoothing factor (between 0 and 1) for classification loss, default=%(default)s")
parser.add_argument('--multi_anchor_assign', default=False, action="store_true",
help = "Assign multiple anchors to single ground truth")
parser.add_argument('--elim_grid_sense', default=False, action="store_true",
help = "Eliminate grid sensitivity")
parser.add_argument('--data_shuffle', default=False, action="store_true",
help='Whether to shuffle train/val data for cross-validation')
parser.add_argument('--gpu_num', type=int, required=False, default=1,
help='Number of GPU to use, default=%(default)s')
parser.add_argument('--model_pruning', default=False, action="store_true",
help='Use model pruning for optimization, only for TF 1.x')
# Evaluation options
parser.add_argument('--eval_online', default=False, action="store_true",
help='Whether to do evaluation on validation dataset during training')
parser.add_argument('--eval_epoch_interval', type=int, required=False, default=10,
help = "Number of iteration(epochs) interval to do evaluation, default=%(default)s")
parser.add_argument('--save_eval_checkpoint', default=False, action="store_true",
help='Whether to save checkpoint with best evaluation result')
args = parser.parse_args()
height, width = args.model_input_shape.split('x')
args.model_input_shape = (int(height), int(width))
main(args)