forked from hongzimao/decima-sim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactor_agent.py
executable file
·556 lines (445 loc) · 21.3 KB
/
actor_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import numpy as np
import tensorflow as tf
import tensorflow.contrib.layers as tl
import bisect
from param import *
from utils import *
from tf_op import *
from msg_passing_path import *
from gcn import GraphCNN
from gsn import GraphSNN
from agent import Agent
from spark_env.job_dag import JobDAG
from spark_env.node import Node
class ActorAgent(Agent):
def __init__(self, sess, node_input_dim, job_input_dim, hid_dims, output_dim,
max_depth, executor_levels, eps=1e-6, act_fn=leaky_relu,
optimizer=tf.train.AdamOptimizer, scope='actor_agent'):
Agent.__init__(self)
self.sess = sess
self.node_input_dim = node_input_dim
self.job_input_dim = job_input_dim
self.hid_dims = hid_dims
self.output_dim = output_dim
self.max_depth = max_depth
self.executor_levels = executor_levels
self.eps = eps
self.act_fn = act_fn
self.optimizer = optimizer
self.scope = scope
# for computing and storing message passing path
self.postman = Postman()
# node input dimension: [total_num_nodes, num_features]
self.node_inputs = tf.placeholder(tf.float32, [None, self.node_input_dim])
# job input dimension: [total_num_jobs, num_features]
self.job_inputs = tf.placeholder(tf.float32, [None, self.job_input_dim])
self.gcn = GraphCNN(
self.node_inputs, self.node_input_dim, self.hid_dims,
self.output_dim, self.max_depth, self.act_fn, self.scope)
self.gsn = GraphSNN(
tf.concat([self.node_inputs, self.gcn.outputs], axis=1),
self.node_input_dim + self.output_dim, self.hid_dims,
self.output_dim, self.act_fn, self.scope)
# valid mask for node action ([batch_size, total_num_nodes])
self.node_valid_mask = tf.placeholder(tf.float32, [None, None])
# valid mask for executor limit on jobs ([batch_size, num_jobs * num_exec_limits])
self.job_valid_mask = tf.placeholder(tf.float32, [None, None])
# map back the dag summeraization to each node ([total_num_nodes, num_dags])
self.dag_summ_backward_map = tf.placeholder(tf.float32, [None, None])
# map gcn_outputs and raw_inputs to action probabilities
# node_act_probs: [batch_size, total_num_nodes]
# job_act_probs: [batch_size, total_num_dags]
self.node_act_probs, self.job_act_probs = self.actor_network(
self.node_inputs, self.gcn.outputs, self.job_inputs,
self.gsn.summaries[0], self.gsn.summaries[1],
self.node_valid_mask, self.job_valid_mask,
self.dag_summ_backward_map, self.act_fn)
# draw action based on the probability (from OpenAI baselines)
# node_acts [batch_size, 1]
logits = tf.log(self.node_act_probs)
noise = tf.random_uniform(tf.shape(logits))
self.node_acts = tf.argmax(logits - tf.log(-tf.log(noise)), 1)
# job_acts [batch_size, num_jobs, 1]
logits = tf.log(self.job_act_probs)
noise = tf.random_uniform(tf.shape(logits))
self.job_acts = tf.argmax(logits - tf.log(-tf.log(noise)), 2)
# Selected action for node, 0-1 vector ([batch_size, total_num_nodes])
self.node_act_vec = tf.placeholder(tf.float32, [None, None])
# Selected action for job, 0-1 vector ([batch_size, num_jobs, num_limits])
self.job_act_vec = tf.placeholder(tf.float32, [None, None, None])
# advantage term (from Monte Calro or critic) ([batch_size, 1])
self.adv = tf.placeholder(tf.float32, [None, 1])
# use entropy to promote exploration, this term decays over time
self.entropy_weight = tf.placeholder(tf.float32, ())
# select node action probability
self.selected_node_prob = tf.reduce_sum(tf.multiply(
self.node_act_probs, self.node_act_vec),
reduction_indices=1, keep_dims=True)
# select job action probability
self.selected_job_prob = tf.reduce_sum(tf.reduce_sum(tf.multiply(
self.job_act_probs, self.job_act_vec),
reduction_indices=2), reduction_indices=1, keep_dims=True)
# actor loss due to advantge (negated)
self.adv_loss = tf.reduce_sum(tf.multiply(
tf.log(self.selected_node_prob * self.selected_job_prob + \
self.eps), -self.adv))
# node_entropy
self.node_entropy = tf.reduce_sum(tf.multiply(
self.node_act_probs, tf.log(self.node_act_probs + self.eps)))
# prob on each job
self.prob_each_job = tf.reshape(
tf.sparse_tensor_dense_matmul(self.gsn.summ_mats[0],
tf.reshape(self.node_act_probs, [-1, 1])),
[tf.shape(self.node_act_probs)[0], -1])
# job entropy
self.job_entropy = \
tf.reduce_sum(tf.multiply(self.prob_each_job,
tf.reduce_sum(tf.multiply(self.job_act_probs,
tf.log(self.job_act_probs + self.eps)), reduction_indices=2)))
# entropy loss
self.entropy_loss = self.node_entropy + self.job_entropy
# normalize entropy
self.entropy_loss /= \
(tf.log(tf.cast(tf.shape(self.node_act_probs)[1], tf.float32)) + \
tf.log(float(len(self.executor_levels))))
# normalize over batch size (note: adv_loss is sum)
# * tf.cast(tf.shape(self.node_act_probs)[0], tf.float32)
# define combined loss
self.act_loss = self.adv_loss + self.entropy_weight * self.entropy_loss
# get training parameters
self.params = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.scope)
# operations for setting network parameters
self.input_params, self.set_params_op = \
self.define_params_op()
# actor gradients
self.act_gradients = tf.gradients(self.act_loss, self.params)
# adaptive learning rate
self.lr_rate = tf.placeholder(tf.float32, shape=[])
# actor optimizer
self.act_opt = self.optimizer(self.lr_rate).minimize(self.act_loss)
# apply gradient directly to update parameters
self.apply_grads = self.optimizer(self.lr_rate).\
apply_gradients(zip(self.act_gradients, self.params))
# network paramter saver
self.saver = tf.train.Saver(max_to_keep=args.num_saved_models)
self.sess.run(tf.global_variables_initializer())
if args.saved_model is not None:
self.saver.restore(self.sess, args.saved_model)
def actor_network(self, node_inputs, gcn_outputs, job_inputs,
gsn_dag_summary, gsn_global_summary,
node_valid_mask, job_valid_mask,
gsn_summ_backward_map, act_fn):
# takes output from graph embedding and raw_input from environment
batch_size = tf.shape(node_valid_mask)[0]
# (1) reshape node inputs to batch format
node_inputs_reshape = tf.reshape(
node_inputs, [batch_size, -1, self.node_input_dim])
# (2) reshape job inputs to batch format
job_inputs_reshape = tf.reshape(
job_inputs, [batch_size, -1, self.job_input_dim])
# (4) reshape gcn_outputs to batch format
gcn_outputs_reshape = tf.reshape(
gcn_outputs, [batch_size, -1, self.output_dim])
# (5) reshape gsn_dag_summary to batch format
gsn_dag_summ_reshape = tf.reshape(
gsn_dag_summary, [batch_size, -1, self.output_dim])
gsn_summ_backward_map_extend = tf.tile(
tf.expand_dims(gsn_summ_backward_map, axis=0), [batch_size, 1, 1])
gsn_dag_summ_extend = tf.matmul(
gsn_summ_backward_map_extend, gsn_dag_summ_reshape)
# (6) reshape gsn_global_summary to batch format
gsn_global_summ_reshape = tf.reshape(
gsn_global_summary, [batch_size, -1, self.output_dim])
gsn_global_summ_extend_job = tf.tile(
gsn_global_summ_reshape, [1, tf.shape(gsn_dag_summ_reshape)[1], 1])
gsn_global_summ_extend_node = tf.tile(
gsn_global_summ_reshape, [1, tf.shape(gsn_dag_summ_extend)[1], 1])
# (4) actor neural network
with tf.variable_scope(self.scope):
# -- part A, the distribution over nodes --
merge_node = tf.concat([
node_inputs_reshape, gcn_outputs_reshape,
gsn_dag_summ_extend,
gsn_global_summ_extend_node], axis=2)
node_hid_0 = tl.fully_connected(merge_node, 32, activation_fn=act_fn)
node_hid_1 = tl.fully_connected(node_hid_0, 16, activation_fn=act_fn)
node_hid_2 = tl.fully_connected(node_hid_1, 8, activation_fn=act_fn)
node_outputs = tl.fully_connected(node_hid_2, 1, activation_fn=None)
# reshape the output dimension (batch_size, total_num_nodes)
node_outputs = tf.reshape(node_outputs, [batch_size, -1])
# valid mask on node
node_valid_mask = (node_valid_mask - 1) * 10000.0
# apply mask
node_outputs = node_outputs + node_valid_mask
# do masked softmax over nodes on the graph
node_outputs = tf.nn.softmax(node_outputs, dim=-1)
# -- part B, the distribution over executor limits --
merge_job = tf.concat([
job_inputs_reshape,
gsn_dag_summ_reshape,
gsn_global_summ_extend_job], axis=2)
expanded_state = expand_act_on_state(
merge_job, [l / 50.0 for l in self.executor_levels])
job_hid_0 = tl.fully_connected(expanded_state, 32, activation_fn=act_fn)
job_hid_1 = tl.fully_connected(job_hid_0, 16, activation_fn=act_fn)
job_hid_2 = tl.fully_connected(job_hid_1, 8, activation_fn=act_fn)
job_outputs = tl.fully_connected(job_hid_2, 1, activation_fn=None)
# reshape the output dimension (batch_size, num_jobs * num_exec_limits)
job_outputs = tf.reshape(job_outputs, [batch_size, -1])
# valid mask on job
job_valid_mask = (job_valid_mask - 1) * 10000.0
# apply mask
job_outputs = job_outputs + job_valid_mask
# reshape output dimension for softmaxing the executor limits
# (batch_size, num_jobs, num_exec_limits)
job_outputs = tf.reshape(
job_outputs, [batch_size, -1, len(self.executor_levels)])
# do masked softmax over jobs
job_outputs = tf.nn.softmax(job_outputs, dim=-1)
return node_outputs, job_outputs
def apply_gradients(self, gradients, lr_rate):
self.sess.run(self.apply_grads, feed_dict={
i: d for i, d in zip(
self.act_gradients + [self.lr_rate],
gradients + [lr_rate])
})
def define_params_op(self):
# define operations for setting network parameters
input_params = []
for param in self.params:
input_params.append(
tf.placeholder(tf.float32, shape=param.get_shape()))
set_params_op = []
for idx, param in enumerate(input_params):
set_params_op.append(self.params[idx].assign(param))
return input_params, set_params_op
def gcn_forward(self, node_inputs, summ_mats):
return self.sess.run([self.gsn.summaries],
feed_dict={i: d for i, d in zip(
[self.node_inputs] + self.gsn.summ_mats,
[node_inputs] + summ_mats)
})
def get_params(self):
return self.sess.run(self.params)
def save_model(self, file_path):
self.saver.save(self.sess, file_path)
def get_gradients(self, node_inputs, job_inputs,
node_valid_mask, job_valid_mask,
gcn_mats, gcn_masks, summ_mats,
running_dags_mat, dag_summ_backward_map,
node_act_vec, job_act_vec, adv, entropy_weight):
return self.sess.run([self.act_gradients,
[self.adv_loss, self.entropy_loss]],
feed_dict={i: d for i, d in zip(
[self.node_inputs] + [self.job_inputs] + \
[self.node_valid_mask] + [self.job_valid_mask] + \
self.gcn.adj_mats + self.gcn.masks + self.gsn.summ_mats + \
[self.dag_summ_backward_map] + [self.node_act_vec] + \
[self.job_act_vec] + [self.adv] + [self.entropy_weight], \
[node_inputs] + [job_inputs] + \
[node_valid_mask] + [job_valid_mask] + \
gcn_mats + gcn_masks + \
[summ_mats, running_dags_mat] + \
[dag_summ_backward_map] + [node_act_vec] + \
[job_act_vec] + [adv] + [entropy_weight])
})
def predict(self, node_inputs, job_inputs,
node_valid_mask, job_valid_mask,
gcn_mats, gcn_masks, summ_mats,
running_dags_mat, dag_summ_backward_map):
return self.sess.run([self.node_act_probs, self.job_act_probs,
self.node_acts, self.job_acts], \
feed_dict={i: d for i, d in zip(
[self.node_inputs] + [self.job_inputs] + \
[self.node_valid_mask] + [self.job_valid_mask] + \
self.gcn.adj_mats + self.gcn.masks + self.gsn.summ_mats + \
[self.dag_summ_backward_map], \
[node_inputs] + [job_inputs] + \
[node_valid_mask] + [job_valid_mask] + \
gcn_mats + gcn_masks + \
[summ_mats, running_dags_mat] + \
[dag_summ_backward_map])
})
def set_params(self, input_params):
self.sess.run(self.set_params_op, feed_dict={
i: d for i, d in zip(self.input_params, input_params)
})
def translate_state(self, obs):
"""
Translate the observation to matrix form
"""
job_dags, source_job, num_source_exec, \
frontier_nodes, executor_limits, \
exec_commit, moving_executors, action_map = obs
# compute total number of nodes
total_num_nodes = int(np.sum(job_dag.num_nodes for job_dag in job_dags))
# job and node inputs to feed
node_inputs = np.zeros([total_num_nodes, self.node_input_dim])
job_inputs = np.zeros([len(job_dags), self.job_input_dim])
# sort out the exec_map
exec_map = {}
for job_dag in job_dags:
exec_map[job_dag] = len(job_dag.executors)
# count in moving executors
for node in moving_executors.moving_executors.values():
exec_map[node.job_dag] += 1
# count in executor commit
for s in exec_commit.commit:
if isinstance(s, JobDAG):
j = s
elif isinstance(s, Node):
j = s.job_dag
elif s is None:
j = None
else:
print('source', s, 'unknown')
exit(1)
for n in exec_commit.commit[s]:
if n is not None and n.job_dag != j:
exec_map[n.job_dag] += exec_commit.commit[s][n]
# gather job level inputs
job_idx = 0
for job_dag in job_dags:
# number of executors in the job
job_inputs[job_idx, 0] = exec_map[job_dag] / 20.0
# the current executor belongs to this job or not
if job_dag is source_job:
job_inputs[job_idx, 1] = 2
else:
job_inputs[job_idx, 1] = -2
# number of source executors
job_inputs[job_idx, 2] = num_source_exec / 20.0
job_idx += 1
# gather node level inputs
node_idx = 0
job_idx = 0
for job_dag in job_dags:
for node in job_dag.nodes:
# copy the feature from job_input first
node_inputs[node_idx, :3] = job_inputs[job_idx, :3]
# work on the node
node_inputs[node_idx, 3] = \
(node.num_tasks - node.next_task_idx) * \
node.tasks[-1].duration / 100000.0
# number of tasks left
node_inputs[node_idx, 4] = \
(node.num_tasks - node.next_task_idx) / 200.0
node_idx += 1
job_idx += 1
return node_inputs, job_inputs, \
job_dags, source_job, num_source_exec, \
frontier_nodes, executor_limits, \
exec_commit, moving_executors, \
exec_map, action_map
def get_valid_masks(self, job_dags, frontier_nodes,
source_job, num_source_exec, exec_map, action_map):
job_valid_mask = np.zeros([1, \
len(job_dags) * len(self.executor_levels)])
job_valid = {} # if job is saturated, don't assign node
base = 0
for job_dag in job_dags:
# new executor level depends on the source of executor
if job_dag is source_job:
least_exec_amount = \
exec_map[job_dag] - num_source_exec + 1
# +1 because we want at least one executor
# for this job
else:
least_exec_amount = exec_map[job_dag] + 1
# +1 because of the same reason above
assert least_exec_amount > 0
assert least_exec_amount <= self.executor_levels[-1] + 1
# find the index for first valid executor limit
exec_level_idx = bisect.bisect_left(
self.executor_levels, least_exec_amount)
if exec_level_idx >= len(self.executor_levels):
job_valid[job_dag] = False
else:
job_valid[job_dag] = True
for l in range(exec_level_idx, len(self.executor_levels)):
job_valid_mask[0, base + l] = 1
base += self.executor_levels[-1]
total_num_nodes = int(np.sum(
job_dag.num_nodes for job_dag in job_dags))
node_valid_mask = np.zeros([1, total_num_nodes])
for node in frontier_nodes:
if job_valid[node.job_dag]:
act = action_map.inverse_map[node]
node_valid_mask[0, act] = 1
return node_valid_mask, job_valid_mask
def invoke_model(self, obs):
# implement this module here for training
# (to pick up state and action to record)
node_inputs, job_inputs, \
job_dags, source_job, num_source_exec, \
frontier_nodes, executor_limits, \
exec_commit, moving_executors, \
exec_map, action_map = self.translate_state(obs)
# get message passing path (with cache)
gcn_mats, gcn_masks, dag_summ_backward_map, \
running_dags_mat, job_dags_changed = \
self.postman.get_msg_path(job_dags)
# get node and job valid masks
node_valid_mask, job_valid_mask = \
self.get_valid_masks(job_dags, frontier_nodes,
source_job, num_source_exec, exec_map, action_map)
# get summarization path that ignores finished nodes
summ_mats = get_unfinished_nodes_summ_mat(job_dags)
# invoke learning model
node_act_probs, job_act_probs, node_acts, job_acts = \
self.predict(node_inputs, job_inputs,
node_valid_mask, job_valid_mask, \
gcn_mats, gcn_masks, summ_mats, \
running_dags_mat, dag_summ_backward_map)
return node_acts, job_acts, \
node_act_probs, job_act_probs, \
node_inputs, job_inputs, \
node_valid_mask, job_valid_mask, \
gcn_mats, gcn_masks, summ_mats, \
running_dags_mat, dag_summ_backward_map, \
exec_map, job_dags_changed
def get_action(self, obs):
# parse observation
job_dags, source_job, num_source_exec, \
frontier_nodes, executor_limits, \
exec_commit, moving_executors, action_map = obs
if len(frontier_nodes) == 0:
# no action to take
return None, num_source_exec
# invoking the learning model
node_act, job_act, \
node_act_probs, job_act_probs, \
node_inputs, job_inputs, \
node_valid_mask, job_valid_mask, \
gcn_mats, gcn_masks, summ_mats, \
running_dags_mat, dag_summ_backward_map, \
exec_map, job_dags_changed = self.invoke_model(obs)
if sum(node_valid_mask[0, :]) == 0:
# no node is valid to assign
return None, num_source_exec
# node_act should be valid
assert node_valid_mask[0, node_act[0]] == 1
# parse node action
node = action_map[node_act[0]]
# find job index based on node
job_idx = job_dags.index(node.job_dag)
# job_act should be valid
assert job_valid_mask[0, job_act[0, job_idx] + \
len(self.executor_levels) * job_idx] == 1
# find out the executor limit decision
if node.job_dag is source_job:
agent_exec_act = self.executor_levels[
job_act[0, job_idx]] - \
exec_map[node.job_dag] + \
num_source_exec
else:
agent_exec_act = self.executor_levels[
job_act[0, job_idx]] - exec_map[node.job_dag]
# parse job limit action
use_exec = min(
node.num_tasks - node.next_task_idx - \
exec_commit.node_commit[node] - \
moving_executors.count(node),
agent_exec_act, num_source_exec)
return node, use_exec