-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinteligencia_artificial_distribuida_proyecto_PARTE_1.py
148 lines (98 loc) · 3.93 KB
/
inteligencia_artificial_distribuida_proyecto_PARTE_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import random
import copy
def create_population(population_num, cities_list, initial_city):
cities = copy.copy(cities_list)
cities.remove(initial_city)
solutions = []
for new_solution in range(population_num):
solution = copy.copy(cities)
random.shuffle(solution)
solution.insert(0, initial_city)
solutions.append(solution)
return solutions
def calc_distances_paths(graph, initial_city, solutions):
distances = []
for solution in solutions:
distance = 0
for city_index in range(len(solution)-1):
distance += graph[solution[city_index]][solution[city_index+1]]
distance += graph[solution[-1]][initial_city]
distances.append(distance)
return distances
def calc_fitness(distances):
fitnesess = np.exp2(-np.array(distances))*100
return fitnesess
def crossover_solutions(solutions, population_num):
crossovered_solutions = []
#Keep the best alive for the next gen
for solution in solutions:
crossovered_solutions.append(solution)
for new_solution in range(population_num-len(solutions)):
crossover_point = random.randint(0, len(solutions[0]))
parents = copy.deepcopy(random.sample(solutions, 2))
cromosomeA = parents[0][:crossover_point]
cromosomeB = parents[1][crossover_point:]
solution = cromosomeA + cromosomeB
crossovered_solutions.append(solution)
return crossovered_solutions
def should_mutate(mutation_prob):
return random.random() < mutation_prob
def mutate_solutions(solutions, mutation_prob):
mutated_solutions = copy.deepcopy(solutions)
for solution in mutated_solutions:
if(should_mutate(mutation_prob)):
#Swap two cities
mutation_pointA, mutation_pointB = random.sample(range(1,len(solution)), 2)
temp = copy.copy(solution[mutation_pointA])
solution[mutation_pointA] = solution[mutation_pointB]
solution[mutation_pointB] = temp
return mutated_solutions
def sort_solutions_by_distance(gen_solutions, distances):
sorted_lists = sorted(zip(gen_solutions, distances))
return sorted_lists
def main():
inf = float('inf')
graph = [[inf, 3, 1, 2, 1],
[3, inf, 1, 1, inf],
[1, 1, inf, inf, 4],
[2, 1, inf, inf, 1],
[1, inf, 4, 1, inf]]
#Params
num_gen = 100
population_num = 10
solutions_to_choose = 3
mutation_prob = 0.5
cities = list(range(0,len(graph)))
initial_city = 0
#initial population
solutions = create_population(population_num, cities, initial_city)
best_solutions_by_gen = []
#For each generation
for gen in range(num_gen):
#Calculate the total distance of each solution
distances = calc_distances_paths(graph, initial_city, solutions)
#print("distances: ", distances)
#Calculate the fitness for each solution
fitnesess = calc_fitness(distances)
#print("fitnesess: ", fitnesess)
#Choose k solutions randomly based on their fitnesess
choosen_solutions = random.choices(solutions, weights=fitnesess, k=solutions_to_choose)
#print("choosen solutions", choosen_solutions)
#Save the best k solutions of this generation
best_solutions_by_gen.append(choosen_solutions)
#Use best solutions to create a new generation by croosover and mutation (based in mutation_prob)
crossovered_solutions = crossover_solutions(choosen_solutions, population_num)
#print("Crossovered_solutions: ", crossovered_solutions)
solutions = mutate_solutions(crossovered_solutions, mutation_prob)
#print("Mutated_solutions: ", solutions)
best_solution_by_gen = []
for gen_solutions in best_solutions_by_gen:
distances = calc_distances_paths(graph, initial_city, gen_solutions)
best_solution_of_gen = sort_solutions_by_distance(gen_solutions, distances)[-1]
best_solution_by_gen.append(best_solution_of_gen)
final_answer = sorted(best_solution_by_gen,key=lambda x: x[1])[0]
print("Answer: ", final_answer)
print(solutions)
if __name__ == '__main__':
main()