-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathpfnet.py
577 lines (462 loc) · 26.7 KB
/
pfnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
from transformer.spatial_transformer import transformer
from utils.network_layers import conv2_layer, locallyconn2_layer, dense_layer
class PFCell(tf.nn.rnn_cell.RNNCell):
"""
PF-net for localization implemented with the RNN interface.
Implements the particle set update, the observation and transition models.
Cell inputs: observation, odometry
Cell states: particle_states, particle_weights
Cell outputs: particle_states, particle_weights
"""
def __init__(self, global_maps, params, batch_size, num_particles):
"""
:param global_maps: tensorflow op (batch, None, None, ch), global maps input. Since the map is fixed
through the trajectory it can be input to the cell here, instead of part of the cell input.
:param params: parsed arguments
:param batch_size: int, minibatch size
:param num_particles: number of particles
"""
super(PFCell, self).__init__()
self.global_maps = global_maps
self.params = params
self.batch_size = batch_size
self.num_particles = num_particles
self.states_shape = (batch_size, num_particles, 3)
self.weights_shape = (batch_size, num_particles, )
@property
def state_size(self):
return (tf.TensorShape(self.states_shape[1:]), tf.TensorShape(self.weights_shape[1:]))
@property
def output_size(self):
return (tf.TensorShape(self.states_shape[1:]), tf.TensorShape(self.weights_shape[1:]))
def __call__(self, inputs, state, scope=None):
"""
Implements a particle update.
:param inputs: observation (batch, 56, 56, ch), odometry (batch, 3).
observation is the sensor reading at time t, odometry is the relative motion from time t to time t+1
:param state: particle states (batch, K, 3), particle weights (batch, K).
weights are assumed to be in log space and they can be unnormalized
:param scope: not used, only kept for the interface. Ops will be created in the current scope.
:return: outputs, state
outputs: particle states and weights after the observation update, but before the transition update
state: updated particle states and weights after both observation and transition updates
"""
with tf.variable_scope(tf.get_variable_scope()):
particle_states, particle_weights = state
observation, odometry = inputs
# observation update
lik = self.observation_model(self.global_maps, particle_states, observation)
particle_weights += lik # unnormalized
# resample
if self.params.resample:
particle_states, particle_weights = self.resample(
particle_states, particle_weights, alpha=self.params.alpha_resample_ratio)
# construct output before motion update
outputs = particle_states, particle_weights
# motion update. this will only affect the particle state input at the next step
particle_states = self.transition_model(particle_states, odometry)
# construct new state
state = particle_states, particle_weights
return outputs, state
def transition_model(self, particle_states, odometry):
"""
Implements a stochastic transition model for localization.
:param particle_states: tf op (batch, K, 3), particle states before the update.
:param odometry: tf op (batch, 3), odometry reading, relative motion in the robot coordinate frame
:return: particle_states updated with the odometry and optionally transition noise
"""
translation_std = self.params.transition_std[0] / self.params.map_pixel_in_meters # in pixels
rotation_std = self.params.transition_std[1] # in radians
with tf.name_scope('transition'):
part_x, part_y, part_th = tf.unstack(particle_states, axis=-1, num=3)
odometry = tf.expand_dims(odometry, axis=1)
odom_x, odom_y, odom_th = tf.unstack(odometry, axis=-1, num=3)
noise_th = tf.random_normal(part_th.get_shape(), mean=0.0, stddev=1.0) * rotation_std
# add orientation noise before translation
part_th += noise_th
cos_th = tf.cos(part_th)
sin_th = tf.sin(part_th)
delta_x = cos_th * odom_x - sin_th * odom_y
delta_y = sin_th * odom_x + cos_th * odom_y
delta_th = odom_th
delta_x += tf.random_normal(delta_x.get_shape(), mean=0.0, stddev=1.0) * translation_std
delta_y += tf.random_normal(delta_y.get_shape(), mean=0.0, stddev=1.0) * translation_std
return tf.stack([part_x+delta_x, part_y+delta_y, part_th+delta_th], axis=-1)
def observation_model(self, global_maps, particle_states, observation):
"""
Implements a discriminative observation model for localization.
The model transforms the single global map to local maps for each particle, where a local map is a local
view from the state defined by the particle.
:param global_maps: tf op (batch, None, None, ch), global maps input.
Assumes a scaling 0..2 where 0 is occupied, 2 is free space.
:param particle_states: tf op (batch, K, 3), particle states before the update
:param observation: tf op (batch, 56, 56, ch), image observation from a rgb, depth, or rgbd camera.
:return: tf op (batch, K) particle likelihoods in the log space, unnormalized
"""
# transform global maps to local maps
local_maps = self.transform_maps(global_maps, particle_states, (28, 28))
# rescale from 0..2 to -1..1. This is not actually necessary.
local_maps = -(local_maps - 1)
# flatten batch and particle dimensions
local_maps = tf.reshape(local_maps,
[self.batch_size * self.num_particles] + local_maps.shape.as_list()[2:])
# get features from the map
map_features = self.map_features(local_maps)
# get features from the observation
obs_features = self.observation_features(observation)
# tile observation features
obs_features = tf.tile(tf.expand_dims(obs_features, axis=1), [1, self.num_particles, 1, 1, 1])
obs_features = tf.reshape(obs_features,
[self.batch_size * self.num_particles] + obs_features.shape.as_list()[2:])
# sanity check
assert obs_features.shape.as_list()[:-1] == map_features.shape.as_list()[:-1]
# merge features and process further
joint_features = tf.concat([map_features, obs_features], axis=-1)
joint_features = self.joint_matrix_features(joint_features)
# reshape to a vector and process further
joint_features = tf.reshape(joint_features, (self.batch_size * self.num_particles, -1))
lik = self.joint_vector_features(joint_features)
lik = tf.reshape(lik, [self.batch_size, self.num_particles])
return lik
@staticmethod
def resample(particle_states, particle_weights, alpha):
"""
Implements (soft)-resampling of particles.
:param particle_states: tf op (batch, K, 3), particle states
:param particle_weights: tf op (batch, K), unnormalized particle weights in log space
:param alpha: float, trade-off parameter for soft-resampling. alpha == 1 corresponds to standard,
hard-resampling. alpha == 0 corresponds to sampling particles uniformly, ignoring their weights.
:return: particle_states, particle_weights
"""
with tf.name_scope('resample'):
assert 0.0 < alpha <= 1.0
batch_size, num_particles = particle_states.get_shape().as_list()[:2]
# normalize
particle_weights = particle_weights - tf.reduce_logsumexp(particle_weights, axis=-1, keep_dims=True)
uniform_weights = tf.constant(-np.log(num_particles), shape=(batch_size, num_particles), dtype=tf.float32)
# build sampling distribution, q(s), and update particle weights
if alpha < 1.0:
# soft resampling
q_weights = tf.stack([particle_weights + np.log(alpha), uniform_weights + np.log(1.0-alpha)], axis=-1)
q_weights = tf.reduce_logsumexp(q_weights, axis=-1, keep_dims=False)
q_weights = q_weights - tf.reduce_logsumexp(q_weights, axis=-1, keep_dims=True) # normalized
particle_weights = particle_weights - q_weights # this is unnormalized
else:
# hard resampling. this will produce zero gradients
q_weights = particle_weights
particle_weights = uniform_weights
# sample particle indices according to q(s)
indices = tf.cast(tf.multinomial(q_weights, num_particles), tf.int32) # shape: (batch_size, num_particles)
# index into particles
helper = tf.range(0, batch_size*num_particles, delta=num_particles, dtype=tf.int32) # (batch, )
indices = indices + tf.expand_dims(helper, axis=1)
particle_states = tf.reshape(particle_states, (batch_size * num_particles, 3))
particle_states = tf.gather(particle_states, indices=indices, axis=0) # (batch_size, num_particles, 3)
particle_weights = tf.reshape(particle_weights, (batch_size * num_particles, ))
particle_weights = tf.gather(particle_weights, indices=indices, axis=0) # (batch_size, num_particles,)
return particle_states, particle_weights
@staticmethod
def transform_maps(global_maps, particle_states, local_map_size):
"""
Implements global to local map transformation
:param global_maps: tf op (batch, None, None, ch) global map input
:param particle_states: tf op (batch, K, 3) particle states that define local views for the transformation
:param local_map_size: tuple, (height, widght), size of the output local maps
:return: tf op (batch, K, local_map_size[0], local_map_size[1], ch). local maps, each shows a
different transformation of the global map corresponding to the particle states
"""
batch_size, num_particles = particle_states.get_shape().as_list()[:2]
total_samples = batch_size * num_particles
flat_states = tf.reshape(particle_states, [total_samples, 3])
# define some helper variables
input_shape = tf.shape(global_maps)
global_height = tf.cast(input_shape[1], tf.float32)
global_width = tf.cast(input_shape[2], tf.float32)
height_inverse = 1.0 / global_height
width_inverse = 1.0 / global_width
# at tf1.6 matmul still does not support broadcasting, so we need full vectors
zero = tf.constant(0, dtype=tf.float32, shape=(total_samples, ))
one = tf.constant(1, dtype=tf.float32, shape=(total_samples, ))
# the global map will be down-scaled by some factor
window_scaler = 8.0
# normalize orientations and precompute cos and sin functions
theta = -flat_states[:, 2] - 0.5 * np.pi
costheta = tf.cos(theta)
sintheta = tf.sin(theta)
# construct an affine transformation matrix step-by-step.
# 1, translate the global map s.t. the center is at the particle state
translate_x = (flat_states[:, 0] * width_inverse * 2.0) - 1.0
translate_y = (flat_states[:, 1] * height_inverse * 2.0) - 1.0
transm1 = tf.stack((one, zero, translate_x, zero, one, translate_y, zero, zero, one), axis=1)
transm1 = tf.reshape(transm1, (total_samples, 3, 3))
# 2, rotate map s.t. the orientation matches that of the particles
rotm = tf.stack((costheta, sintheta, zero, -sintheta, costheta, zero, zero, zero, one), axis=1)
rotm = tf.reshape(rotm, (total_samples, 3, 3))
# 3, scale down the map
scale_x = tf.fill((total_samples, ), float(local_map_size[1] * window_scaler) * width_inverse)
scale_y = tf.fill((total_samples, ), float(local_map_size[0] * window_scaler) * height_inverse)
scalem = tf.stack((scale_x, zero, zero, zero, scale_y, zero, zero, zero, one), axis=1)
scalem = tf.reshape(scalem, (total_samples, 3, 3))
# 4, translate the local map s.t. the particle defines the bottom mid-point instead of the center
translate_y2 = tf.constant(-1.0, dtype=tf.float32, shape=(total_samples, ))
transm2 = tf.stack((one, zero, zero, zero, one, translate_y2, zero, zero, one), axis=1)
transm2 = tf.reshape(transm2, (total_samples, 3, 3))
# chain the transformation matrices into a single one: translate + rotate + scale + translate
transform_m = tf.matmul(tf.matmul(tf.matmul(transm1, rotm), scalem), transm2)
# reshape to the format expected by the spatial transform network
transform_m = tf.reshape(transform_m[:, :2], (batch_size, num_particles, 6))
# do the image transformation using the spatial transform network
# iterate over particle to avoid tiling large global maps
output_list = []
for i in range(num_particles):
output_list.append(transformer(global_maps, transform_m[:,i], local_map_size))
local_maps = tf.stack(output_list, axis=1)
# set shape information that is lost in the spatial transform network
local_maps = tf.reshape(local_maps, (batch_size, num_particles, local_map_size[0], local_map_size[1],
global_maps.shape.as_list()[-1]))
return local_maps
@staticmethod
def map_features(local_maps):
assert local_maps.get_shape().as_list()[1:3] == [28, 28]
data_format = 'channels_last'
with tf.variable_scope("map"):
x = local_maps
layer_i = 1
convs = [
conv2_layer(
24, (3, 3), activation=None, padding='same', data_format=data_format,
use_bias=True, layer_i=layer_i)(x),
conv2_layer(
16, (5, 5), activation=None, padding='same', data_format=data_format,
use_bias=True, layer_i=layer_i)(x),
conv2_layer(
8, (7, 7), activation=None, padding='same', data_format=data_format,
use_bias=True, layer_i=layer_i)(x),
conv2_layer(
8, (7, 7), activation=None, padding='same', data_format=data_format,
dilation_rate=(2, 2), use_bias=True, layer_i=layer_i)(x),
conv2_layer(
8, (7, 7), activation=None, padding='same', data_format=data_format,
dilation_rate=(3, 3), use_bias=True, layer_i=layer_i)(x),
]
x = tf.concat(convs, axis=-1)
x = tf.contrib.layers.layer_norm(x, activation_fn=tf.nn.relu)
assert x.get_shape().as_list()[1:4] == [28, 28, 64]
# (28x28x64)
x = tf.layers.max_pooling2d(x, pool_size=(3, 3), strides=(2, 2), padding="same")
layer_i+=1
convs = [
conv2_layer(
4, (3, 3), activation=None, padding='same', data_format=data_format,
use_bias=True, layer_i=layer_i)(x),
conv2_layer(
4, (5, 5), activation=None, padding='same', data_format=data_format,
use_bias=True, layer_i=layer_i)(x),
]
x = tf.concat(convs, axis=-1)
x = tf.contrib.layers.layer_norm(x, activation_fn=tf.nn.relu)
return x # (14x14x8)
@staticmethod
def observation_features(observation):
data_format = 'channels_last'
with tf.variable_scope("observation"):
x = observation
layer_i = 1
convs = [
conv2_layer(
128, (3, 3), activation=None, padding='same', data_format=data_format,
use_bias=True, layer_i=layer_i)(x),
conv2_layer(
128, (5, 5), activation=None, padding='same', data_format=data_format,
use_bias=True, layer_i=layer_i)(x),
conv2_layer(
64, (5, 5), activation=None, padding='same', data_format=data_format,
dilation_rate=(2, 2), use_bias=True, layer_i=layer_i)(x),
conv2_layer(
64, (5, 5), activation=None, padding='same', data_format=data_format,
dilation_rate=(4, 4), use_bias=True, layer_i=layer_i)(x),
]
x = tf.concat(convs, axis=-1)
x = tf.layers.max_pooling2d(x, pool_size=(3, 3), strides=(2, 2), padding="same")
x = tf.contrib.layers.layer_norm(x, activation_fn=tf.nn.relu)
assert x.get_shape().as_list()[1:4] == [28, 28, 384]
layer_i += 1
x = conv2_layer(
16, (3, 3), activation=None, padding='same', data_format=data_format,
use_bias=True, layer_i=layer_i)(x)
x = tf.layers.max_pooling2d(x, pool_size=(3, 3), strides=(2, 2), padding="same")
x = tf.contrib.layers.layer_norm(x, activation_fn=tf.nn.relu)
assert x.get_shape().as_list()[1:4] == [14, 14, 16]
return x # (14,14,16)
@staticmethod
def joint_matrix_features(joint_matrix):
assert joint_matrix.get_shape().as_list()[1:4] == [14, 14, 24]
data_format = 'channels_last'
with tf.variable_scope("joint"):
x = joint_matrix
layer_i = 1
# pad manually to match different kernel sizes
x_pad1 = tf.pad(x, paddings=tf.constant([[0, 0], [1, 1,], [1, 1], [0, 0]]))
convs = [
locallyconn2_layer(
8, (3, 3), activation='relu', padding='valid', data_format=data_format,
use_bias=True, layer_i=layer_i)(x),
locallyconn2_layer(
8, (5, 5), activation='relu', padding='valid', data_format=data_format,
use_bias=True, layer_i=layer_i)(x_pad1),
]
x = tf.concat(convs, axis=-1)
x = tf.layers.max_pooling2d(x, pool_size=(3, 3), strides=(2, 2), padding="valid")
assert x.get_shape().as_list()[1:4] == [5, 5, 16]
return x # (5, 5, 16)
@staticmethod
def joint_vector_features(joint_vector):
with tf.variable_scope("joint"):
x = joint_vector
x = dense_layer(1, activation=None, use_bias=True, name='fc1')(x)
return x
class PFNet(object):
""" Implements PF-net. Unrolls the PF-net RNN cell and defines losses and training ops."""
def __init__(self, inputs, labels, params, is_training):
"""
Calling this will create all tf ops for PF-net.
:param inputs: list of tf ops, the inputs to PF-net. Assumed to have the following elements:
global_maps, init_particle_states, observations, odometries, is_first_step
:param labels: tf op, labels for training. Assumed to be the true states along the trajectory.
:param params: parsed arguments
:param is_training: bool, true for training.
"""
self.params = params
# define ops to be accessed conveniently from outside
self.outputs = []
self.hidden_states = []
self.train_loss_op = None
self.valid_loss_op = None
self.all_distance2_op = None
self.global_step_op = None
self.learning_rate_op = None
self.train_op = None
self.update_state_op = tf.constant(0)
# build the network. this will generate the ops defined above
self.build(inputs, labels, is_training)
def build(self, inputs, labels, is_training):
"""
Unroll the PF-net RNN cell and create loss ops and optionally, training ops
"""
self.outputs = self.build_rnn(*inputs)
self.build_loss_op(self.outputs[0], self.outputs[1], true_states=labels)
if is_training:
self.build_train_op()
def save_state(self, sess):
"""
Returns a list, the hidden state of PF-net, i.e. the particle states and particle weights.
The output can be used with load_state to restore the current hidden state.
"""
return sess.run(self.hidden_states)
def load_state(self, sess, saved_state):
"""
Overwrite the hidden state of PF-net to that of saved_state.
"""
return sess.run(self.hidden_states,
feed_dict={self.hidden_states[i]: saved_state[i] for i in range(len(self.hidden_states))})
def build_loss_op(self, particle_states, particle_weights, true_states):
"""
Create tf ops for various losses. This should be called only once with is_training=True.
"""
assert particle_weights.get_shape().ndims == 3
lin_weights = tf.nn.softmax(particle_weights, dim=-1)
true_coords = true_states[:, :, :2]
mean_coords = tf.reduce_sum(tf.multiply(particle_states[:,:,:,:2], lin_weights[:,:,:,None]), axis=2)
coord_diffs = mean_coords - true_coords
# convert from pixel coordinates to meters
coord_diffs *= self.params.map_pixel_in_meters
# coordinate loss component: (x-x')^2 + (y-y')^2
loss_coords = tf.reduce_sum(tf.square(coord_diffs), axis=2)
true_orients = true_states[:, :, 2]
orient_diffs = particle_states[:, :, :, 2] - true_orients[:,:,None]
# normalize between -pi..+pi
orient_diffs = tf.mod(orient_diffs + np.pi, 2*np.pi) - np.pi
# orintation loss component: (sum_k[(theta_k-theta')*weight_k] )^2
loss_orient = tf.square(tf.reduce_sum(orient_diffs * lin_weights, axis=2))
# combine translational and orientation losses
loss_combined = loss_coords + 0.36 * loss_orient
loss_pred = tf.reduce_mean(loss_combined, name='prediction_loss')
# add L2 regularization loss
loss_reg = tf.multiply(tf.losses.get_regularization_loss(), self.params.l2scale, name='l2')
loss_total = tf.add_n([loss_pred, loss_reg], name="training_loss")
self.all_distance2_op = loss_coords
self.valid_loss_op = loss_pred
self.train_loss_op = loss_total
return loss_total
def build_train_op(self):
""" Create optimizer and train op. This should be called only once. """
# make sure this is only called once
assert self.train_op is None and self.global_step_op is None and self.learning_rate_op is None
# global step and learning rate
with tf.device("/cpu:0"):
self.global_step_op = tf.get_variable(
initializer=tf.constant_initializer(0.0), shape=(), trainable=False, name='global_step',)
self.learning_rate_op = tf.train.exponential_decay(
self.params.learningrate, self.global_step_op, decay_steps=1, decay_rate=self.params.decayrate,
staircase=True, name="learning_rate")
# create gradient descent optimizer with the given learning rate.
optimizer = tf.train.RMSPropOptimizer(self.learning_rate_op, decay=0.9)
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
self.train_op = optimizer.minimize(self.train_loss_op, global_step=None, var_list=tf.trainable_variables())
return self.train_op
def build_rnn(self, global_maps, init_particle_states, observations, odometries, is_first_step):
"""
Unroll the PF-net RNN cell through time. Input arguments are the inputs to PF-net. The time dependent
fields are expected to be broken into fixed-length segments defined by params.bptt_steps
"""
batch_size, trajlen = observations.shape.as_list()[:2]
num_particles = init_particle_states.shape.as_list()[1]
global_map_ch = global_maps.shape.as_list()[-1]
init_particle_weights = tf.constant(np.log(1.0/float(num_particles)),
shape=(batch_size, num_particles), dtype=tf.float32)
# create hidden state variable
assert len(self.hidden_states) == 0 # no hidden state should be set before
self.hidden_states = [
tf.get_variable("particle_states", shape=init_particle_states.get_shape(),
dtype=init_particle_states.dtype, initializer=tf.constant_initializer(0), trainable=False),
tf.get_variable("particle_weights", shape=init_particle_weights.get_shape(),
dtype=init_particle_weights.dtype, initializer=tf.constant_initializer(0), trainable=False),
]
# choose state for the current trajectory segment
state = tf.cond(is_first_step,
true_fn=lambda: (init_particle_states, init_particle_weights),
false_fn=lambda: tuple(self.hidden_states))
with tf.variable_scope("rnn"):
# hack to create variables on GPU
dummy_cell_func = PFCell(
global_maps=tf.zeros((1, 1, 1, global_map_ch), dtype=global_maps.dtype),
params=self.params, batch_size=1, num_particles=1)
dummy_cell_func(
(tf.zeros([1]+observations.get_shape().as_list()[2:], dtype=observations.dtype), # observation
tf.zeros([1, 3], dtype=odometries.dtype)), # odometry
(tf.zeros([1, 1, 3], dtype=init_particle_states.dtype), # particle_states
tf.zeros([1, 1], dtype=init_particle_weights.dtype))) # particle_weights
# variables are now created. set reuse
tf.get_variable_scope().reuse_variables()
# unroll real steps using the variables already created
cell_func = PFCell(global_maps=global_maps, params=self.params, batch_size=batch_size,
num_particles=num_particles)
outputs, state = tf.nn.dynamic_rnn(cell=cell_func,
inputs=(observations, odometries),
initial_state=state,
swap_memory=True,
time_major=False,
parallel_iterations=1,
scope=tf.get_variable_scope())
particle_states, particle_weights = outputs
# define an op to update the hidden state, i.e. the particle states and particle weights.
# this should be evaluated after every input
with tf.control_dependencies([particle_states, particle_weights]):
self.update_state_op = tf.group(
*(self.hidden_states[i].assign(state[i]) for i in range(len(self.hidden_states))))
return particle_states, particle_weights