forked from nicolashahn/set-solver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_shapes.py
executable file
·102 lines (87 loc) · 2.97 KB
/
extract_shapes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#!/usr/bin/env python
"""Find shapes in a card image."""
import os
import sys
import cv2
import numpy as np
from common import (
SHAPES_OUT_DIR,
display_im,
write_im,
clean_make_dir,
rectify,
scale_points
)
# min channel cutoff for the threshold filter
THRESH_MIN = 180
OUT_WIDTH = 100
OUT_HEIGHT = 200
def extract_shapes_from_im(card_im,
out_w=OUT_WIDTH,
out_h=OUT_HEIGHT,
display_shapes=False):
orig_im = card_im
im = cv2.cvtColor(orig_im, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(im,(1,1),1000)
flag, thresh = cv2.threshold(blur, THRESH_MIN, 255, cv2.THRESH_BINARY)
# invert, otherwise RETR_EXTERNAL makes the whole card the largest contour
thresh = cv2.bitwise_not(thresh)
# `image` is the thrown away value
_, contours, hierarchy = cv2.findContours(
thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
# sort contours by largest volume
contours = sorted(contours, key=cv2.contourArea, reverse=True)
shapes = []
for i in range(min(3, len(contours))):
rectangle = cv2.minAreaRect(contours[i])
corners = cv2.boxPoints(rectangle)
corners = rectify(corners, portrait=True)
corners = scale_points(corners, 1.15)
# writes dots for corners of bounding boxes on original image
# for point in corner:
# cv2.circle(orig_im, (point[0], point[1]), 0, (0,0,255), im.shape[0]/50)
# create an image of just the shape
h = np.array([
[0,0],
[out_w-1,0],
[out_w-1,out_h-1],
[0,out_h-1]
],np.float32)
transform = cv2.getPerspectiveTransform(corners,h)
warp = cv2.warpPerspective(orig_im,transform,(out_w,out_h))
if display_shapes:
display_im(warp)
shapes.append(warp)
return shapes
def extract_shapes_from_file(card_file,
out_w=OUT_WIDTH,
out_h=OUT_HEIGHT,
display_shapes=False):
"""Given a card image file, cut out and return the 1, 2, or 3 shapes
on the card. Returns a list of lists of 4 points, corner coordinates of
each bounding box.
"""
# a lot of this function is the same as card_finder.py's find_cards,
# TODO refactor for both to inherit from a common function
orig_im = cv2.imread(card_file, 1)
return extract_shapes_from_im(
orig_im, out_w=out_w, out_h=out_h, display_shapes=display_shapes)
def write_shape_with_label(shape, input_card_path, out_dir=SHAPES_OUT_DIR):
"""Writes shape to a filename built from a labeled card file, replacing
its number with 'single'.
"""
if not os.path.exists(out_dir):
os.mkdir(out_dir)
tokens = input_card_path.split('/')[-1].split('-')
tokens[1] = 'single'
new_filename = '-'.join(tokens)
print(new_filename)
write_im(shape, new_filename, out_dir=out_dir)
def main():
card_files = sys.argv[1:]
for card_file in card_files:
shapes = extract_shapes_from_file(card_file, display_shapes=False)
# only works with labeled files
write_shape_with_label(shapes[0], card_file)
if __name__ == "__main__":
main()