-
Notifications
You must be signed in to change notification settings - Fork 0
/
ObjectiveVectorTraitsPrecomputed.py
238 lines (188 loc) · 7.2 KB
/
ObjectiveVectorTraitsPrecomputed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# -*- coding: utf-8 -*-
import os, shutil, errno,math,sqlite3,csv,random
import logging
from datetime import datetime
from math import sqrt
from math import floor
logging.basicConfig(filename='evolve.log',level=logging.DEBUG)
entry_set = set()
def minimizing(i): #minimizing everything
return True
def maximizing(i):
return False
def nObjectives():
return 3
td =[{"min":1 , "max":51}, #fwdBufferSize
{"min":1 , "max":30}, # maxMonitorNodes
{"min":0.01 , "max":0.99}, # treshold
{"min":1 , "max":99},] #min packets
def minimumBounds(i):
return td[i]["min"]
def maximumBounds(i):
return td[i]["max"]
def nParams():
return 4
def minmax(num,min,max):
if num > max:
return max
if num < min:
return min
return num
def minmaxi(num,i):
return minmax(num,td[i]["min"],td[i]["max"])
def round_pareto(num):
return float(math.floor(num*10000))/10000
NAME = "experiment-lab-1b"
def evaluate(fwdBufferSize,maxMonitorNodes,treshold,packets):
db = sqlite3.connect(NAME+".db")
fwdBufferSize = minmaxi(float(math.floor(fwdBufferSize)),0)
maxMonitorNodes = minmaxi(float(math.floor(maxMonitorNodes)),1)
treshold = minmaxi(float(math.floor(treshold*100))/100,2)
packets = minmaxi(float(math.floor(packets)),3)
entry_set.add((fwdBufferSize,maxMonitorNodes,treshold,packets))
logging.info((fwdBufferSize,maxMonitorNodes,treshold,packets))
cur = db.cursor()
cur.execute("Select (bufferSize*16+maxMonitorNodes*8) as memory,fp, fn from precomputed where bufferSize = ? and maxMonitorNodes = ? and treshold = ? and minPackets = ? ", (fwdBufferSize,maxMonitorNodes,treshold,packets))
result = cur.fetchall();
if len(result)>0:
logging.info("Result: "+ str(result[0]))
return result[0]
def arg_dict(args,arg_numbers):
d = {}
lines = args.split("\n")
for line in lines:
vals = line.split(":")
if len(vals)>1:
if vals[0] in arg_numbers:
d[vals[0]] = float(vals[1])
else:
d[vals[0]] = vals[1]
return d;
def get_pareto_csv(fname):
fpareto = open(fname) #NAME+"-pareto.csv")
fparetostr = fpareto.read()
fparetolines = fparetostr.split("\n")
pareto = []
for line in fparetolines:
vals = line.split(',')
if len(vals) > 1:
pareto.append([round_pareto(float(vals[0])),round_pareto(float(vals[1])),round_pareto(float(vals[2]))])
return pareto;
def better(p1,p2):
onebetter = False
for (i1,i2) in zip(p1,p2):
if i2 < i1:
return False
if i1 < i2:
onebetter = True
return onebetter
def dominates(front,p):
for i in front:
if better(i,p):
return True
return False
def nondominated(front):
return filter(lambda p: not dominates(front,p),front)
def dominatedbit(p0,front,R):
out = []
for p1 in front:
p3 = [max(i0,i1) for (i0,i1) in zip(p0,p1)]
if p3!=p0 and not p3 in out:
out.append(p3)
return hv(nondominated(out),R)
def improves_last(p1,p2):
for (i,j) in zip(p1,p2)[::-1]:
if i < j:
return -1;
if i > j:
return 1;
return 0
def inclHV(p,R):
return reduce(lambda x, y: x*y,
[r-i for (i,r) in zip(p,R)])
def exclHV(p,front,R):
volume = inclHV(p,R)
dom = dominatedbit(p,front,R)
return volume - dom
def hv(front,R):
if front == []:
return 0
f = sorted(front,cmp=improves_last)
return exclHV(f[0],f[1:],R) + hv(f[1:],R)
def distanceindi(p1, p2,maximum):
return max([max([(v2-v1)/m for (v1,v2,m)
in zip(o1,o2,maximum)]) for (o1,o2) in zip(p1,p2)])
def average(xs):
return float(sum(xs))/float(len(xs))
def ndistance(i1,i2,maximum):
t = [abs((v2-v1))/m for (v1,v2,m)
in zip(i1,i2,maximum)]
return (reduce(lambda x,y:x*y,t))**(1.0/len(i1))
def distanceavg(o1, o2, maximum):
return average(
[min([ndistance(i1,i2,maximum)
for i2 in o2])
for i1 in o1])
def distance_aggregate(indi,nb,maximum):
return sum([abs((i-n))/r for (i,n,r) in zip(indi,nb,maximum)])
def spacing(approximation,maximum):
dist_indi = []
for indi in approximation:
neighbor_dist = [distance_aggregate(indi,nb,maximum)
for nb in approximation if nb != indi]
dist_indi.append(min(neighbor_dist))
return sum(dist_indi)/len(dist_indi)
def dist(approximation,maximum):
split = zip(*approximation)
aggregate = 0
for (objective,r) in zip(split,maximum):
aggregate +=sum([abs(prev-next)/r
for (prev,next) in zip(
[prev for prev in objective[:-2]],
[nxt for nxt in objective[2:]])])
return aggregate/len(split)
REFERENCE = [1032.0,0.4,1.0] # memory, fp, fn
def report(inp,rep):
db = sqlite3.connect(NAME+"-results.db")
cur = db.cursor()
uuid = str(datetime.now())
print "uuid:",uuid
cur.execute('CREATE TABLE IF NOT EXISTS reportin (uuid VARCHAR(30),popSize REAL,maxGen REAL,mutEpsilon REAL,mutProb REAL,pMut Real,crossProb REAL,pCross REAL, pAlgo VARCHAR(10),evaluations INT,numberofresults INT,hypervolume REAL,paretodist REAL,avgparetodist REAL,distance REAL,spacing REAL)')
cur.execute('CREATE TABLE IF NOT EXISTS reportres (uuid VARCHAR(30),bufferSize REAL,maxMonitorNodes REAL,treshold REAL,minPackets REAL,memory REAL,fp REAL,fn REAL)')
print "inp:",inp
print "rep:",rep
arg_numbers = ["popSize","maxGen","mutEpsilon","pCross","crossProb","pMut","mutProb"]
d = arg_dict(inp, arg_numbers)
pareto = get_pareto_csv(NAME+"-pareto.csv")
pareto_result = []
lines2 = rep.split("\n")
for line in lines2:
vals = line.split()
if len(vals) > 1:
memory = round_pareto(int(vals[0]))
fp = round_pareto(float(vals[1]))
fn = round_pareto(float(vals[2]))
fwdBufferSize = float(vals[4])
maxMonitorNodes = float(vals[5])
treshold = float(vals[6])
packets = float(vals[7])
pareto_result.append([memory,fp,fn])
cur.execute('INSERT OR IGNORE INTO reportres (uuid,bufferSize,maxMonitorNodes,treshold,minPackets,memory,fp,fn) VALUES (?,?,?,?,?,?,?,?)',(uuid,fwdBufferSize,maxMonitorNodes,treshold,packets,memory,fp,fn))
hypervolumeindi = hv(pareto_result,REFERENCE)
print "hv:",hypervolumeindi
distindi = distanceindi(pareto_result,pareto,REFERENCE)
print "distindi:",distindi
avgdist = distanceavg(pareto_result,pareto,REFERENCE)
print "avgdist:",avgdist
dis = dist(pareto_result,REFERENCE)
print "dist:",dis
space = spacing(pareto_result,REFERENCE)
print "space:",space
cur.execute('INSERT OR IGNORE INTO reportin (uuid, popSize, maxGen, mutEpsilon, mutProb, pMut, crossProb, pCross, pAlgo, evaluations, numberofresults, hypervolume, paretodist, avgparetodist, distance,spacing) VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)',(uuid,d["popSize"],d["maxGen"],d["mutEpsilon"],d["mutProb"],d["pMut"],d["crossProb"],d["pCross"],d["pAlgo"],len(entry_set),len(pareto_result),hypervolumeindi,distindi,avgdist,dis,space))
db.commit()
def process(maxMonitoredNodes,bufferSize,treshold,minpackets):
return True
def completed(maxMonitoredNodes,bufferSize,treshold,minpackets):
return True
def collect(maxMonitoredNodes,bufferSize,treshold,minpackets):
return ()