-
Notifications
You must be signed in to change notification settings - Fork 0
/
modules.py
271 lines (222 loc) · 9.65 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn as nn
import torchaudio
import sys
from torch.autograd import Variable
import math
import librosa
class Conv_1d(nn.Module):
def __init__(self, input_channels, output_channels, shape=3, stride=1, pooling=2):
super(Conv_1d, self).__init__()
self.conv = nn.Conv1d(input_channels, output_channels, shape, stride=stride, padding=shape//2)
self.bn = nn.BatchNorm1d(output_channels)
self.relu = nn.ReLU()
self.mp = nn.MaxPool1d(pooling)
def forward(self, x):
out = self.mp(self.relu(self.bn(self.conv(x))))
return out
class Conv_2d(nn.Module):
def __init__(self, input_channels, output_channels, shape=3, stride=1, pooling=2):
super(Conv_2d, self).__init__()
self.conv = nn.Conv2d(input_channels, output_channels, shape, stride=stride, padding=shape//2)
self.bn = nn.BatchNorm2d(output_channels)
self.relu = nn.ReLU()
self.mp = nn.MaxPool2d(pooling)
def forward(self, x):
out = self.mp(self.relu(self.bn(self.conv(x))))
return out
class Res_2d(nn.Module):
def __init__(self, input_channels, output_channels, shape=3, stride=2):
super(Res_2d, self).__init__()
# convolution
self.conv_1 = nn.Conv2d(input_channels, output_channels, shape, stride=stride, padding=shape//2)
self.bn_1 = nn.BatchNorm2d(output_channels)
self.conv_2 = nn.Conv2d(output_channels, output_channels, shape, padding=shape//2)
self.bn_2 = nn.BatchNorm2d(output_channels)
# residual
self.diff = False
if (stride != 1) or (input_channels != output_channels):
self.conv_3 = nn.Conv2d(input_channels, output_channels, shape, stride=stride, padding=shape//2)
self.bn_3 = nn.BatchNorm2d(output_channels)
self.diff = True
self.relu = nn.ReLU()
def forward(self, x):
# convolution
out = self.bn_2(self.conv_2(self.relu(self.bn_1(self.conv_1(x)))))
# residual
if self.diff:
x = self.bn_3(self.conv_3(x))
out = x + out
out = self.relu(out)
return out
class Res_2d_mp(nn.Module):
def __init__(self, input_channels, output_channels, pooling=2):
super(Res_2d_mp, self).__init__()
self.conv_1 = nn.Conv2d(input_channels, output_channels, 3, padding=1)
self.bn_1 = nn.BatchNorm2d(output_channels)
self.conv_2 = nn.Conv2d(output_channels, output_channels, 3, padding=1)
self.bn_2 = nn.BatchNorm2d(output_channels)
self.relu = nn.ReLU()
self.mp = nn.MaxPool2d(pooling)
def forward(self, x):
out = self.bn_2(self.conv_2(self.relu(self.bn_1(self.conv_1(x)))))
out = x + out
out = self.mp(self.relu(out))
return out
class ResSE_1d(nn.Module):
def __init__(self, input_channels, output_channels, shape=3, stride=1, pooling=3):
super(ResSE_1d, self).__init__()
# convolution
self.conv_1 = nn.Conv1d(input_channels, output_channels, shape, stride=stride, padding=shape//2)
self.bn_1 = nn.BatchNorm1d(output_channels)
self.conv_2 = nn.Conv1d(output_channels, output_channels, shape, padding=shape//2)
self.bn_2 = nn.BatchNorm1d(output_channels)
# squeeze & excitation
self.dense1 = nn.Linear(output_channels, output_channels)
self.dense2 = nn.Linear(output_channels, output_channels)
# residual
self.diff = False
if (stride != 1) or (input_channels != output_channels):
self.conv_3 = nn.Conv1d(input_channels, output_channels, shape, stride=stride, padding=shape//2)
self.bn_3 = nn.BatchNorm1d(output_channels)
self.diff = True
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
self.mp = nn.MaxPool1d(pooling)
def forward(self, x):
# convolution
out = self.bn_2(self.conv_2(self.relu(self.bn_1(self.conv_1(x)))))
# squeeze & excitation
se_out = nn.AvgPool1d(out.size(-1))(out)
se_out = se_out.squeeze(-1)
se_out = self.relu(self.dense1(se_out))
se_out = self.sigmoid(self.dense2(se_out))
se_out = se_out.unsqueeze(-1)
out = torch.mul(out, se_out)
# residual
if self.diff:
x = self.bn_3(self.conv_3(x))
out = x + out
out = self.mp(self.relu(out))
return out
class Conv_V(nn.Module):
# vertical convolution
def __init__(self, input_channels, output_channels, filter_shape):
super(Conv_V, self).__init__()
self.conv = nn.Conv2d(input_channels, output_channels, filter_shape,
padding=(0, filter_shape[1]//2))
self.bn = nn.BatchNorm2d(output_channels)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.bn(self.conv(x)))
freq = x.size(2)
out = nn.MaxPool2d((freq, 1), stride=(freq, 1))(x)
out = out.squeeze(2)
return out
class Conv_H(nn.Module):
# horizontal convolution
def __init__(self, input_channels, output_channels, filter_length):
super(Conv_H, self).__init__()
self.conv = nn.Conv1d(input_channels, output_channels, filter_length,
padding=filter_length//2)
self.bn = nn.BatchNorm1d(output_channels)
self.relu = nn.ReLU()
def forward(self, x):
freq = x.size(2)
out = nn.AvgPool2d((freq, 1), stride=(freq, 1))(x)
out = out.squeeze(2)
out = self.relu(self.bn(self.conv(out)))
return out
# Modules for harmonic filters
def hz_to_midi(hz):
return 12 * (torch.log2(hz) - np.log2(440.0)) + 69
def midi_to_hz(midi):
return 440.0 * (2.0 ** ((midi - 69.0)/12.0))
def note_to_midi(note):
return librosa.core.note_to_midi(note)
def hz_to_note(hz):
return librosa.core.hz_to_note(hz)
def initialize_filterbank(sample_rate, n_harmonic, semitone_scale):
# MIDI
# lowest note
low_midi = note_to_midi('C1')
# highest note
high_note = hz_to_note(sample_rate / (2 * n_harmonic))
high_midi = note_to_midi(high_note)
# number of scales
level = (high_midi - low_midi) * semitone_scale
midi = np.linspace(low_midi, high_midi, level + 1)
hz = midi_to_hz(midi[:-1])
# stack harmonics
harmonic_hz = []
for i in range(n_harmonic):
harmonic_hz = np.concatenate((harmonic_hz, hz * (i+1)))
return harmonic_hz, level
class HarmonicSTFT(nn.Module):
def __init__(self,
sample_rate=16000,
n_fft=513,
win_length=None,
hop_length=None,
pad=0,
power=2,
normalized=False,
n_harmonic=6,
semitone_scale=2,
bw_Q=1.0,
learn_bw=None):
super(HarmonicSTFT, self).__init__()
# Parameters
self.sample_rate = sample_rate
self.n_harmonic = n_harmonic
self.bw_alpha = 0.1079
self.bw_beta = 24.7
# Spectrogram
self.spec = torchaudio.transforms.Spectrogram(n_fft=n_fft, win_length=win_length,
hop_length=None, pad=0,
window_fn=torch.hann_window,
power=power, normalized=normalized, wkwargs=None)
self.amplitude_to_db = torchaudio.transforms.AmplitudeToDB()
# Initialize the filterbank. Equally spaced in MIDI scale.
harmonic_hz, self.level = initialize_filterbank(sample_rate, n_harmonic, semitone_scale)
# Center frequncies to tensor
self.f0 = torch.tensor(harmonic_hz.astype('float32'))
# Bandwidth parameters
if learn_bw == 'only_Q':
self.bw_Q = nn.Parameter(torch.tensor(np.array([bw_Q]).astype('float32')))
elif learn_bw == 'fix':
self.bw_Q = torch.tensor(np.array([bw_Q]).astype('float32'))
def get_harmonic_fb(self):
# bandwidth
bw = (self.bw_alpha * self.f0 + self.bw_beta) / self.bw_Q
bw = bw.unsqueeze(0) # (1, n_band)
f0 = self.f0.unsqueeze(0) # (1, n_band)
fft_bins = self.fft_bins.unsqueeze(1) # (n_bins, 1)
up_slope = torch.matmul(fft_bins, (2/bw)) + 1 - (2 * f0 / bw)
down_slope = torch.matmul(fft_bins, (-2/bw)) + 1 + (2 * f0 / bw)
fb = torch.max(self.zero, torch.min(down_slope, up_slope))
return fb
def to_device(self, device, n_bins):
self.f0 = self.f0.to(device)
self.bw_Q = self.bw_Q.to(device)
# fft bins
self.fft_bins = torch.linspace(0, self.sample_rate//2, n_bins)
self.fft_bins = self.fft_bins.to(device)
self.zero = torch.zeros(1)
self.zero = self.zero.to(device)
def forward(self, waveform):
# stft
spectrogram = self.spec(waveform)
# to device
self.to_device(waveform.device, spectrogram.size(1))
# triangle filter
harmonic_fb = self.get_harmonic_fb()
harmonic_spec = torch.matmul(spectrogram.transpose(1, 2), harmonic_fb).transpose(1, 2)
# (batch, channel, length) -> (batch, harmonic, f0, length)
b, c, l = harmonic_spec.size()
harmonic_spec = harmonic_spec.view(b, self.n_harmonic, self.level, l)
# amplitude to db
harmonic_spec = self.amplitude_to_db(harmonic_spec)
return harmonic_spec