-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
79 lines (71 loc) · 2.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from pathlib import Path
import torch
import yaml
from data import (
get_dataloader,
get_encoder_decoder_fn,
load_data,
load_vocab,
train_test_split,
)
from engine import train
from model import TransformerDecoderModel
from util import get_device, save_model, seed_everything
if __name__ == "__main__":
# Load config and data
script_dir = Path(__file__).parent
with open(script_dir / "config.yaml", "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
seed = config["seed"]
lr = config["lr"]
train_steps = config["train_steps"]
batch_size = config["batch_size"]
block_size = config["block_size"]
log_interval = config["log_interval"]
n_heads = config["n_heads"]
head_size = config["head_size"]
n_layers = config["n_layers"]
dropout = config["dropout"]
embed_size = config["embed_size"]
eval_steps = config["eval_steps"]
save_path = Path(config["save_path"])
data = load_data()
vocab = load_vocab()
encode, _ = get_encoder_decoder_fn(vocab)
encoded_data = encode(data)
encoded_train_data, encoded_test_data = train_test_split(encoded_data, 0.9)
train_data_loader = get_dataloader(
encoded_train_data, block_size, batch_size, shuffle=True
)
test_data_loader = get_dataloader(
encoded_test_data, block_size, batch_size, shuffle=False
)
# Build model
seed_everything(config["seed"])
model = TransformerDecoderModel(
vocab_size=len(vocab),
block_size=block_size,
n_layers=n_layers,
n_heads=n_heads,
head_size=head_size,
dropout=dropout,
embed_size=embed_size,
)
# Train model
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
loss_fn = torch.nn.CrossEntropyLoss()
device = get_device()
train(
model=model,
optimizer=optimizer,
loss_fn=loss_fn,
train_data_loader=train_data_loader,
test_data_loader=test_data_loader,
train_steps=train_steps,
log_interval=log_interval,
eval_steps=eval_steps,
device=device,
)
# Save model
save_model(model, save_path)
print(f"Saved model to {save_path}")