Skip to content

Latest commit

 

History

History
79 lines (60 loc) · 2.68 KB

README.md

File metadata and controls

79 lines (60 loc) · 2.68 KB

MultiSpeaker Tacotron2 for Persian Language

This repository contains a Persian language adaptation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS). The core implementation is based on this repository, modified to work with Persian text and phoneme data.


Quickstart

Data Structure

Organize your data as follows:

dataset/persian_date/
    train_data/
        speaker1/book-1/
            sample1.txt
            sample1.wav
            ...
        ...
    test_data/
        ...

Preprocessing

  1. Audio Preprocessing
python synthesizer_preprocess_audio.py dataset --datasets_name persian_data --subfolders train_data --no_alignments
  1. Embedding Preprocessing
python synthesizer_preprocess_embeds.py dataset/SV2TTS/synthesizer

Train the Synthesizer

To begin training the synthesizer model:

python synthesizer_train.py my_run dataset/SV2TTS/synthesizer

Inference

To generate a wav file, place all trained models in the saved_models/final_models directory. If you haven’t trained the speaker encoder or vocoder models, you can use pretrained models from saved_models/default.

Using WavRNN as Vocoder

python inference.py --vocoder "WavRNN" --text "یک نمونه از خروجی" --ref_wav_path "/path/to/sample/reference.wav" --test_name "test1"

Using HiFiGAN as Vocoder (Recommended)

WavRNN is an old vocoder and if you want to use HiFiGAN you must first download a pretrained model in English.

  1. Install Parallel WaveGAN
pip install parallel_wavegan
  1. Download Pretrained HiFiGAN Model
from parallel_wavegan.utils import download_pretrained_model
download_pretrained_model("vctk_hifigan.v1", "saved_models/final_models/vocoder_HiFiGAN")
  1. Run Inference with HiFiGAN
python inference.py --vocoder "HiFiGAN" --text "یک نمونه از خروجی" --ref_wav_path "/path/to/sample/reference.wav" --test_name "test1"

Demo

Check out some audio samples from the trained model in this directory.

References: