-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcamera.py
88 lines (64 loc) · 2.66 KB
/
camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import cv2
from model import FacialExpressionModel
import numpy as np
import time
facec = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
model = FacialExpressionModel("model.json", "model_weights.h5")
font = cv2.FONT_HERSHEY_SIMPLEX
# Create a file to save predictions.
f = open("live_stat/RawPredictions.txt", "w+")
f.close()
class WebCamera(object):
def __init__(self):
self.video = cv2.VideoCapture(0)
def __del__(self):
self.video.release()
# returns camera frames along with bounding boxes and predictions
def get_frame(self):
_, fr = self.video.read()
gray_fr = cv2.cvtColor(fr, cv2.COLOR_BGR2GRAY)
faces = facec.detectMultiScale(gray_fr, 1.3, 5)
for (x, y, w, h) in faces:
fc = gray_fr[y : y + h, x : x + w]
roi = cv2.resize(fc, (48, 48))
pred = model.predict_emotion(roi[np.newaxis, :, :, np.newaxis])
# Generate timestamp.
timestr = time.strftime("%H:%M:%S")
# Send predictions to the Predictions file.
f = open("live_stat/RawPredictions.txt", "a+")
f.write(timestr + ": " + pred + "\n")
f.close()
cv2.putText(fr, pred, (x, y), font, 1, (0, 0, 255), 4)
cv2.rectangle(fr, (x, y), (x + w, y + h), (255, 0, 0), 2)
_, jpeg = cv2.imencode(".jpg", fr)
return jpeg.tobytes()
class Video(object):
def __init__(self, id):
if id == 1:
self.video = cv2.VideoCapture("videos/presidential_debate.mp4")
if id == 2:
self.video = cv2.VideoCapture("videos/facial_exp.mkv")
def __del__(self):
self.video.release()
# returns camera frames along with bounding boxes and predictions
def get_frame(self):
_, fr = self.video.read()
gray_fr = cv2.cvtColor(fr, cv2.COLOR_BGR2GRAY)
faces = facec.detectMultiScale(gray_fr, 1.3, 5)
for (x, y, w, h) in faces:
fc = gray_fr[y : y + h, x : x + w]
roi = cv2.resize(fc, (48, 48))
pred = model.predict_emotion(roi[np.newaxis, :, :, np.newaxis])
cv2.putText(fr, pred, (x, y), font, 1, (0, 0, 255), 4)
cv2.rectangle(fr, (x, y), (x + w, y + h), (255, 0, 0), 2)
_, jpeg = cv2.imencode(".jpg", fr)
return jpeg.tobytes()
def get_img(img_path):
fr = cv2.imread(img_path)
gray_fr = cv2.cvtColor(fr, cv2.COLOR_BGR2GRAY)
faces = facec.detectMultiScale(gray_fr, 1.3, 5)
for (x, y, w, h) in faces:
fc = gray_fr[y : y + h, x : x + w]
roi = cv2.resize(fc, (48, 48))
pred = model.predict_emotion(roi[np.newaxis, :, :, np.newaxis])
return pred