-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalutils.py
155 lines (109 loc) · 4.45 KB
/
alutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import random
import cv2
import numpy as np
from keras.models import Model
from sklearn.cluster import KMeans
from umap import UMAP
from run import RESIZE_TO
from data_generator import normalize_image
# HELPERS ===========================================================
def get_last_encoder_layer_by_model(modelname, name_mapping):
return {
'ResNet-4': 'activation_25',
'MNetV3-S-2': 'final_activation',
'SNetV2-1': 'stage4/block4/channel_shuffle'
}[name_mapping[modelname]]
def score_entropy_avg(inp):
return np.average(inp)
def score_entropy_sum(inp):
return np.sum(inp)
def load_and_normalize(i):
img = cv2.imread(i).astype(np.float32)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, RESIZE_TO)
return normalize_image(img, colorspace='rgb')
def get_entropy_scores(active_models, images, aggreg_func):
"""Return array of tuples (image name, entropy score)"""
scores = []
for i in images:
img = load_and_normalize(i)
# get average score
score = 0
for m in active_models:
pred = m.model.predict(np.expand_dims(img, axis=0))[0]
s = -(pred*np.log2(pred, where=0<pred) +
(1-pred)*np.log2(1-pred, where=0<(1-pred)))
score += aggreg_func(s)
score /= len(active_models)
scores.append((i, score))
return scores
# SAMPLING STRATEGIES ===============================================
def strategy_random(images, k=1, **kwargs):
return random.sample(images, k)
def _strategy_entropy(images, k=1, models=None, aggreg_func=None, **kwargs):
scores = []
active_models = list(filter(lambda x: not x.finished, models))
scores = get_entropy_scores(active_models, images, aggreg_func)
return [i[0] for i in sorted(scores, key=lambda x: x[1], reverse=True)[:k]]
def strategy_avg_entropy(images, k=1, models=None, **kwargs):
return _strategy_entropy(images, k=k, models=models,
aggreg_func=score_entropy_avg, **kwargs)
def strategy_sum_entropy(images, k=1, models=None, **kwargs):
return _strategy_entropy(images, k=k, models=models,
aggreg_func=score_entropy_sum, **kwargs)
def strategy_diversity(images, k=1, models=None, name_mapping=None, **kwargs):
# we expect that models and modelnames is just array of one item
model = models[0]
layer_name = get_last_encoder_layer_by_model(model.name, name_mapping)
out = [model.model.get_layer(layer_name).output]
_m = Model(inputs=model.model.inputs, outputs=out)
scores = get_entropy_scores(models, images, score_entropy_avg)
# compute embedding for every image
embeddings = []
for i in images:
img = load_and_normalize(i)
pred = _m.predict(np.expand_dims(img, axis=0))[0]
avg = np.mean(pred, axis=2)
flat = avg.flatten()
embeddings.append(flat)
embeddings = np.array(embeddings)
kmeans = KMeans(n_clusters=k)
kmeans.fit(embeddings)
pred_classes = kmeans.predict(embeddings)
scores_np = np.array(scores, dtype=tuple)
result = []
for cluster in range(k):
clust = list(scores_np[np.where(pred_classes == cluster)])
if len(clust):
result.append(
sorted(clust, key=lambda x: x[1], reverse=True)[0][0]
)
return result
def strategy_init_diversity(images, k=1, **kwargs):
vectors = []
for i in images:
img = load_and_normalize(i)
vectors.append(img.flatten())
vectors = np.array(vectors)
# 640*480 vectors
embeddings = UMAP(n_components=2).fit_transform(vectors)
kmeans = KMeans(n_clusters=k)
kmeans.fit(embeddings)
pred_classes = kmeans.predict(embeddings)
images_np = np.array(images, dtype=str)
result = []
for cluster in range(k):
clust = list(images_np[np.where(pred_classes == cluster)])
if len(clust):
result.append(clust[0])
return result
# STOPPING STRATEGIES ===============================================
def stopping_nostop(model=None, **kwargs):
return False
def stopping_early_val_loss(model=None, epochs=20, **kwargs):
"""Stop training if val loss has not decreased for some time"""
best_ep = model.best_val_loss.epoch
return best_ep < model.epochs_trained - epochs
# EPOCH STRATEGIES ==================================================
def epochs_constant(current, max_epochs=0, **kwargs):
return current <= max_epochs