forked from arokem/bowties
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocalizer.py
198 lines (159 loc) · 6.64 KB
/
localizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import numpy as np
from psychopy import visual,core,event
import psychopy.monitors.calibTools as calib
from tools import *
my_colors = {'red1':[1,0,0],
'red2':[1,0,0], # Twice as likely to occur!
'green':[0,1,0],
'blue':[0,0,1],
'm1':[1,1,0],
'm2':[0,0.6,0.6],
'm3':[0,0.6,0],
'm4':[0.6,0.6,0],
'm5':[0,0,0.6],
'm6':[0.6,0.6,1]}
rgb = np.array([1.,1.,1.])
two_pi = 2*np.pi
#Read a params object from the params file:
p = Params()
f = start_data_file(p.subject)
p.save(f)
f = save_data(f, 'time', 'event') # Events are either color-switches or button presses
calib.monitorFolder = './calibration/'# over-ride the usual setting of where
# monitors are stored
mon = calib.Monitor(p.monitor) #Get the monitor object and pass that as an
#argument to win:
win = visual.Window(monitor=mon,units='deg',
screen=p.screen_number,
fullscr=p.full_screen)
fixation = visual.PatchStim(win, tex=None, mask = 'circle',color=1*rgb,
size=p.fixation_size)
#fixation_surround = visual.PatchStim(win, tex=None, mask='circle',
#color=-1*rgb,
#size=p.fixation_size*1.5)
central_grey = visual.PatchStim(win, tex=None, mask='circle',
color=0*rgb,
size=p.fixation_size*3)
vertical = [visual.RadialStim(win,size=p.size,
radialCycles=p.radial_cyc,
angularCycles=p.angular_cyc,
visibleWedge=[0,
p.angular_width/2]),
visual.RadialStim(win,size=p.size,
radialCycles=p.radial_cyc,
angularCycles=p.angular_cyc,
visibleWedge=[360-p.angular_width/2,
360]),
visual.RadialStim(win,size=p.size,
radialCycles=p.radial_cyc,
angularCycles=p.angular_cyc,
visibleWedge=[180-p.angular_width/2,
180+p.angular_width/2])]
for v in vertical: v.setSF = p.sf
horizontal = [visual.RadialStim(win,size=p.size,
radialCycles=p.radial_cyc,
angularCycles=p.angular_cyc,
visibleWedge=[90-p.angular_width/2,
90 + p.angular_width/2]),
visual.RadialStim(win,size=p.size,
radialCycles=p.radial_cyc,
angularCycles=p.angular_cyc,
visibleWedge=[270-p.angular_width/2,
270+p.angular_width/2])]
for h in horizontal: h.setSF = p.sf
message = """ PRESS THE KEY \n WHEN YOU SEE THE RED DOT! """
#Initialize and call in one:
Text(win, text=message, height=1.5)()
#fixation_surround.draw()
fixation.draw()
win.flip()
#Wait 1 sec, to avoid running off:
core.wait(1)
ttl = 0
#After that, wait for the ttl pulse:
while ttl<1:
for key in event.getKeys():
if key:
ttl = 1
# Initialize to True:
switcheroo = True
r_phase_sign = np.sign(np.random.randn(1))
a_phase_sign = np.sign(np.random.randn(1))
t_arr = []
fix_counter = 0
color_arr = []
key_press = []
color_key = 'white'
for block in xrange(p.n_blocks):
block_clock = core.Clock()
t=0
t_previous = 0
while t<p.block_duration:
t = block_clock.getTime()
t_diff = t-t_previous
if t + (block * p.block_duration) > (fix_counter * p.color_dur):
fix_counter += 1
old_color_key = color_key
while color_key == old_color_key:
color_key = my_colors.keys()[np.random.randint(len(my_colors.keys()))]
this_color = my_colors[color_key]
fixation.setColor(this_color)
color_arr.append(color_key)
f = save_data(f, t + (block * p.block_duration), color_key)
if np.mod(block,2)==0:
this = vertical
else:
this = horizontal
if t>2 and np.mod(int(t),2)==0:
if switcheroo:
r_phase_sign = np.sign(np.random.randn(1))
a_phase_sign = np.sign(np.random.randn(1))
switcheroo = False
if np.mod(int(t)-1,2)==0:
switcheroo = True
# The contrast just reverses (no randomness)
for thisone in this: thisone.setContrast(np.sin(t*p.temporal_freq*np.pi*2))
# Keep checking for time:
if block_clock.getTime()>=p.block_duration:
break
for thisone in this:
thisone.setRadialPhase(thisone.radialPhase +
r_phase_sign*t_diff*two_pi/p.temporal_freq/2)
if block_clock.getTime()>=p.block_duration:
break
thisone.setAngularPhase(thisone.angularPhase +
a_phase_sign*t_diff*two_pi/p.temporal_freq/2)
thisone.draw()
#Keep checking for time:
if block_clock.getTime()>=p.block_duration:
break
central_grey.draw()
#Keep checking for time:
if block_clock.getTime()>=p.block_duration:
break
#fixation_surround.draw()
#Keep checking for time:
if block_clock.getTime()>=p.block_duration:
break
fixation.draw()
#Keep checking for time:
if block_clock.getTime()>=p.block_duration:
break
win.flip()
#Keep checking for time:
if block_clock.getTime()>=p.block_duration:
break
#handle key presses each frame
for key in event.getKeys():
if key in ['escape','q']:
win.close()
f.close()
core.quit()
else:
key_press.append(t + (block * p.block_duration))
f = save_data(f, t + (block * p.block_duration), 'key pressed')
t_previous = t
t_arr.append(block_clock.getTime())
win.close()
f.close()
core.quit()