forked from marioarbras/aircraft-design-tool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdesign_space_analysis.m
393 lines (308 loc) · 18.4 KB
/
design_space_analysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
% Aircraft design tool
%
% Copyright (C) 2022 Mario Bras
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License version 3 as
% published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <https://www.gnu.org/licenses/>.
function vehicle = design_space_analysis(mission, vehicle, energy)
global constants;
wl = 0:5:2000;
dl = 0:5:10000;
pl = 0:0.0005:0.5;
[plf_grid, wl_grid] = meshgrid(pl, wl);
[plv_grid, dl_grid] = meshgrid(pl, dl);
cf = ones(length(wl), length(pl));
cv = ones(length(dl), length(pl));
% Configure plot
colors = {'#0072BD','#D95319','#EDB120','#7E2F8E','#77AC30','#4DBEEE','#A2142F'};
figure();
yyaxis right;
legend;
hold on;
a = gca;
a.Title.String = 'Design Point';
a.XLim = [0 pl(end)];
a.XLabel.String = 'W/P';
a.YLim = [0 dl(end)];
a.YLabel.String = 'W/A';
a.LineStyleOrder = '-';
colororder(colors)
yyaxis left;
a.YLim = [0 wl(end)];
a.YLabel.String = 'W/S';
a.LineStyleOrder = '-';
colororder(colors)
k = k_parameter(vehicle);
% Get design wing loading, disk loading and power loading
c = find_by_type(vehicle.components, 'wing.main');
wl_design = vehicle.mass * constants.g / c.area_ref;
c = find_by_type(vehicle.components, 'driver.rotor.main');
dl_design = vehicle.mass * constants.g / rotor_area(c);
fpl_design = 0;
vpl_design = 0;
% Iterate over horizontal flight mission segments
yyaxis left;
forward_region = cf;
vertical_region = cv;
for i = 1 : length(mission.segments)
if strcmp(mission.segments{i}.type, 'climb') % Climb segment
[constraint, forward_region, power] = climb(plf_grid, wl_grid, wl, k, mission.segments{i}, vehicle, energy);
yyaxis left;
plot(constraint, wl, 'DisplayName', strcat(mission.segments{i}.name, ": climb constraint"));
fpl = vehicle.mass * constants.g / power;
if fpl > fpl_design
fpl_design = fpl;
end
elseif strcmp(mission.segments{i}.type, 'cruise') % Cruise segment
[range_constraint, cruise_speed_constraint, forward_region, power] = cruise(plf_grid, wl_grid, wl, k, mission.segments{i}, vehicle, energy);
yyaxis left;
plot([pl(1) pl(end)], [range_constraint range_constraint], 'DisplayName', strcat(mission.segments{i}.name, ": range constraint"));
plot(cruise_speed_constraint, wl, 'DisplayName', strcat(mission.segments{i}.name, ": cruise speed constraint"));
fpl = vehicle.mass * constants.g / power;
if fpl > fpl_design
fpl_design = fpl;
end
elseif strcmp(mission.segments{i}.type, 'hold') % Hold segment
[constraint, forward_region, power] = loiter(wl_grid, k, mission.segments{i}, vehicle, energy);
yyaxis left;
plot([pl(1) pl(end)], [constraint constraint], 'DisplayName', strcat(mission.segments{i}.name, ": endurance constraint"));
fpl = vehicle.mass * constants.g / power;
if fpl > fpl_design
fpl_design = fpl;
end
elseif strcmp(mission.segments{i}.type, 'descent') % Descent segment
network = find_network_components(vehicle, find_by_name(energy.networks, mission.segments{i}.energy_network));
% TODO
fpl = vehicle.mass * constants.g / network_max_power(network);
if fpl > fpl_design
fpl_design = fpl;
end
elseif strcmp(mission.segments{i}.type, 'hover') % Hover segment
[constraint, vertical_region, power] = hover(plv_grid, dl_grid, dl, mission.segments{i}, vehicle, energy);
yyaxis right;
plot(constraint, dl, 'DisplayName', strcat(mission.segments{i}.name, ": hover constraint"));
vpl = vehicle.mass * constants.g / power;
if vpl > vpl_design
vpl_design = vpl;
end
elseif strcmp(mission.segments{i}.type, 'transition') % Transition segment
[constraint, vertical_region, power] = transition(plv_grid, dl_grid, wl_design, dl, k, mission.segments{i}, mission.segments{i+1}, vehicle, energy);
yyaxis right;
plot(constraint, dl, 'DisplayName', strcat(mission.segments{i}.name, ": transition constraint"));
vpl = vehicle.mass * constants.g / power;
if vpl > vpl_design
vpl_design = vpl;
end
elseif strcmp(mission.segments{i}.type, 'vertical_climb') % Vertical climb segment
[constraint, vertical_region, power] = vertical_climb(plv_grid, dl_grid, dl, mission.segments{i}, vehicle, energy);
yyaxis right;
plot(constraint, dl, 'DisplayName', strcat(mission.segments{i}.name, ": vertical climb constraint"));
vpl = vehicle.mass * constants.g / power;
if vpl > vpl_design
vpl_design = vpl;
end
elseif strcmp(mission.segments{i}.type, 'vertical_descent') % Vertical descent segment
network = find_network_components(vehicle, find_by_name(energy.networks, mission.segments{i}.energy_network));
% TODO
vpl = vehicle.mass * constants.g / network_max_power(network);
if vpl > vpl_design
vpl_design = vpl;
end
end
cf = cf .* forward_region;
cv = cv .* vertical_region;
end
% Plot feasible design region
cf(~cf) = NaN;
yyaxis left;
surf(pl, wl, cf, 'FaceAlpha', 0.2, 'FaceColor', '#0072BD', 'EdgeColor', 'none', 'DisplayName', 'Forward Flight Design Space');
cv(~cv) = NaN;
yyaxis right;
surf(pl, dl, cv, 'FaceAlpha', 0.2, 'FaceColor', '#D95319', 'EdgeColor', 'none', 'DisplayName', 'Vertical Flight Design Space');
% Plot design point
yyaxis left;
scatter(fpl_design, wl_design, 'filled', 'MarkerEdgeColor', '#0072BD', 'MarkerFaceColor', '#0072BD', 'DisplayName', 'Forward Flight Design Point');
yyaxis right;
scatter(vpl_design, dl_design, 'filled', 'MarkerEdgeColor', '#D95319', 'MarkerFaceColor', '#D95319', 'DisplayName', 'Vertical Flight Design Point');
% Helper functions
function [constraint, region, power] = hover(plv_grid, dl_grid, dl, segment, vehicle, energy)
network = find_network_components(vehicle, find_by_name(energy.networks, segment.energy_network));
engine = find_by_type(network, 'engine');
constraint = hover_constraint(dl, segment.density, engine.efficiency);
region = hover_region(plv_grid, dl_grid, segment.density, engine.efficiency);
power = network_max_power(network);
function [constraint, region, power] = transition(plv_grid, dl_grid, wl, dl, k, segment, next_segment, vehicle, energy)
network = find_network_components(vehicle, find_by_name(energy.networks, segment.energy_network));
[segment_props, ~] = find_by_name(vehicle.segments, segment.name);
rotor = find_by_type(network, 'driver.rotor');
constraint = transition_constraint(wl, dl, segment.density, k, segment_props.base_drag_coefficient, rotor.tip_velocity, rotor.rotor_solidity, rotor.base_drag_coefficient, rotor.induced_power_factor, next_segment.velocity, segment.transition_angle);
region = transition_region(plv_grid, wl, dl_grid, segment.density, k, segment_props.base_drag_coefficient, rotor.tip_velocity, rotor.rotor_solidity, rotor.base_drag_coefficient, rotor.induced_power_factor, next_segment.velocity, segment.transition_angle);
power = network_max_power(network);
function [constraint, region, power] = vertical_climb(plv_grid, dl_grid, dl, segment, vehicle, energy)
network = find_network_components(vehicle, find_by_name(energy.networks, segment.energy_network));
rotor = find_by_type(network, 'driver.rotor');
constraint = vertical_climb_constraint(dl, segment.density(1), rotor.tip_velocity, rotor.rotor_solidity, rotor.base_drag_coefficient, rotor.induced_power_factor, segment.velocity);
region = vertical_climb_region(plv_grid, dl_grid, segment.density(1), rotor.tip_velocity, rotor.rotor_solidity, rotor.base_drag_coefficient, rotor.induced_power_factor, segment.velocity);
power = network_max_power(network);
function [constraint, region, power] = climb(plf_grid, wl_grid, wl, k, segment, vehicle, energy)
network = find_network_components(vehicle, find_by_name(energy.networks, segment.energy_network));
engine = find_by_type(network, 'engine');
[segment_props, ~] = find_by_name(vehicle.segments, segment.name);
if is_type(engine, 'engine.jet')
constraint = climb_constraint_jet(wl, segment.density(1), segment.velocity, segment_props.base_drag_coefficient, k, segment.angle);
region = climb_region_jet(plf_grid, wl_grid, segment.density(1), segment.velocity, segment_props.base_drag_coefficient, k, segment.angle);
elseif is_type(engine, 'engine.prop')
prop = find_by_type(network, 'driver.rotor');
constraint = climb_constraint_prop(wl, segment.density(1), segment.velocity, segment_props.base_drag_coefficient, k, segment.angle, prop.efficiency);
region = climb_region_prop(plf_grid, wl_grid, segment.density(1), segment.velocity, segment_props.base_drag_coefficient, k, segment.angle, prop.efficiency);
end
power = network_max_power(network);
function [range_constraint, cruise_speed_constraint, region, power] = cruise(plf_grid, wl_grid, wl, k, segment, vehicle, energy)
network = find_network_components(vehicle, find_by_name(energy.networks, segment.energy_network));
engine = find_by_type(network, 'engine');
[segment_props, ~] = find_by_name(vehicle.segments, segment.name);
if is_type(engine, 'engine.jet')
range_constraint = range_constraint_jet(segment.density, segment.velocity, segment_props.base_drag_coefficient, k);
range_region = range_region_jet(wl_grid, segment.density, segment.velocity, segment_props.base_drag_coefficient, k);
cruise_speed_constraint = cruise_speed_constraint_jet(wl, segment.density, segment.velocity, segment_props.base_drag_coefficient, k);
cruise_speed_region = cruise_speed_region_jet(plf_grid, wl_grid, segment.density, segment.velocity, segment_props.base_drag_coefficient, k);
elseif is_type(engine, 'engine.prop')
range_constraint = range_constraint_prop(segment.density, segment.velocity, segment_props.base_drag_coefficient, k);
range_region = range_region_prop(wl_grid, segment.density, segment.velocity, segment_props.base_drag_coefficient, k);
prop = find_by_type(network, 'driver.rotor');
cruise_speed_constraint = cruise_speed_constraint_prop(wl, segment.density, segment.velocity, segment_props.base_drag_coefficient, k, prop.efficiency);
cruise_speed_region = cruise_speed_region_prop(plf_grid, wl_grid, segment.density, segment.velocity, segment_props.base_drag_coefficient, k, prop.efficiency);
end
region = range_region .* cruise_speed_region;
power = network_max_power(network);
function [constraint, region, power] = loiter(wl_grid, k, segment, vehicle, energy)
network = find_network_components(vehicle, find_by_name(energy.networks, segment.energy_network));
engine = find_by_type(network, 'engine');
[segment_props, ~] = find_by_name(vehicle.segments, segment.name);
if is_type(engine, 'engine.jet')
constraint = endurance_constraint_jet(segment.density, segment.velocity, segment_props.base_drag_coefficient, k);
region = endurance_region_jet(wl_grid, segment.density, segment.velocity, segment_props.base_drag_coefficient, k);
elseif is_type(engine, 'engine.prop')
constraint = endurance_constraint_prop(segment.density, segment.velocity, segment_props.base_drag_coefficient, k);
region = endurance_region_prop(wl_grid, segment.density, segment.velocity, segment_props.base_drag_coefficient, k);
end
power = network_max_power(network);
function k = k_parameter(vehicle)
c = find_by_type(vehicle.components, 'wing.main');
k = 1 / pi / c.aspect_ratio / c.oswald_efficiency;
%% Performance functions
function v = v_min_thrust(wl, rho, k, cd_0)
v = sqrt(2 * wl / rho * sqrt(k / cd_0));
function v = v_min_power(wl, rho, k, cd_0)
v = sqrt(2 * wl / rho * sqrt(k / 3 / cd_0));
function v = v_best_climb_rate_jet(tl, wl, rho, k, cd_0)
v = sqrt(wl / 3 / rho / cd_0 * (1 / tl + sqrt(1 / tl^2 + 12 * cd_0 * k)));
function v = v_best_climb_rate_prop(wl, rho, k, cd_0)
v = v_min_power(wl, rho, k, cd_0);
function v = v_best_climb_angle_jet(wl, rho, k, cd_0)
v = v_min_thrust(wl, rho, k, cd_0);
function v = v_best_climb_angle_prop(wl, rho, k, cd_0)
v = 0.875 * v_best_climb_rate_prop(wl, rho, k, cd_0); % Raymer pp. 466
function c_l = cl_min_thrust(k, cd_0)
c_l = sqrt(cd_0 / k);
function c_l = cl_min_power(k, cd_0)
c_l = sqrt(3 * cd_0 / k);
function cd = cd_min_thrust(cd_0)
cd = 2 * cd_0;
function cd = cd_min_power(cd_0)
cd = 4 * cd_0;
%% Vertical flight constraint functions
function pl = hover_constraint(dl, rho, fm)
pl = fm .* sqrt(2 .* rho ./ dl);
function pl = vertical_climb_constraint(dl, rho, v_tip, ss, cd, k_i, v_y)
pl = 1 ./ (v_y - k_i .* v_y ./ 2 + k_i .* sqrt(v_y.^2 + 2 .* dl ./ rho) ./ 2 + rho .* v_tip.^3 .* ss .* cd ./ dl ./ 8);
function pl = vertical_descent_constraint(dl, rho, v_tip, ss, cd, k_i, v_y, v_i)
if v_y / v_i <= -2 % If this condition is met, the vertical climb equation is used for descent, else, an empirical equation is employed
pl = 1 ./ (v_y - k_i ./ 2 * (v_y + sqrt(v_y.^2 - 2 .* dl ./ rho)) + rho .* v_tip.^3 .* ss .* cd ./ dl ./ 8);
else
v_d = v_i * (k_i - 1.125 * v_y / v_i - 1.372 * (v_y / v_i)^2 - 1.718 * (v_y / v_i)^3 - 0.655 * (v_y / v_i)^4); % Induced velocity in descent according to an empirical relation (see lecture slides)
pl = 1 ./ (v_y + k_i .* v_d + rho .* v_tip.^3 ./ dl .* ss .* cd ./ 8);
end
function pl = transition_constraint(wl, dl, rho, k, cd_0, v_tip, ss, cd, k_i, v, tt_tilt)
aa = 0; % Assuming zero angle of attack of the blades
mm = v * cosd(aa) / v_tip;
pl = 1 ./ (k_i ./ sind(tt_tilt) .* sqrt(-v.^2 ./ 2 + sqrt((v.^2 ./ 2).^2 + (dl ./ 2 ./ rho ./ sind(tt_tilt)).^2)) + rho .* v_tip.^3 ./ dl .* (ss .* cd ./ 8 .* (1 + 4.6 .* mm.^2)) + 0.5 .* rho .* v^3 .* cd_0 ./ wl + 2 .* wl .* k ./ rho ./ v);
%% Vertical flight constraint regions
function c = hover_region(pl, dl, rho, ee)
c = pl < ee .* sqrt(2 .* rho ./ dl);
function c = vertical_climb_region(pl, dl, rho, v_tip, ss, cd, k_i, v_y)
c = pl < 1 ./ (v_y - k_i .* v_y ./ 2 + k_i .* sqrt(v_y.^2 + 2 .* dl ./ rho) ./ 2 + rho .* v_tip.^3 .* ss .* cd ./ dl ./ 8);
function c = vertical_descent_region(pl, dl, rho, v_tip, ss, cd, k_i, v_y, v_i)
if v_y / v_i <= -2 % If this condition is met, the vertical climb equation is used for descent, else, an empirical equation is employed
c = pl < 1 ./ (v_y - k_i ./ 2 * (v_y + sqrt(v_y.^2 - 2 .* dl ./ rho)) + rho .* v_tip.^3 .* ss .* cd ./ dl ./ 8);
else
v_d = v_i * (k_i - 1.125 * v_y / v_i - 1.372 * (v_y / v_i)^2 - 1.718 * (v_y / v_i)^3 - 0.655 * (v_y / v_i)^4); % Induced velocity in descent according to an empirical relation (see lecture slides)
c = pl < 1 ./ (v_y + k_i .* v_d + rho .* v_tip.^3 ./ dl .* ss .* cd ./ 8);
end
function c = transition_region(pl, wl, dl, rho, k, cd_0, v_tip, ss, cd, k_i, v, tt_tilt)
aa = 0; % Assuming zero angle of attack of the blades
mm = v * cosd(aa) / v_tip;
c = pl < 1 ./ (k_i ./ sind(tt_tilt) .* sqrt(-v.^2 ./ 2 + sqrt((v.^2 ./ 2).^2 + (dl ./ 2 ./ rho ./ sind(tt_tilt)).^2)) + rho .* v_tip.^3 ./ dl .* (ss .* cd ./ 8 .* (1 + 4.6 .* mm.^2)) + 0.5 .* rho .* v^3 .* cd_0 ./ wl + 2 .* wl .* k ./ rho ./ v);
% Forward flight constraint functions
function wl = range_constraint_jet(rho, v, cd_0, k)
wl = 0.5 * rho * v^2 * sqrt(cd_0 / 3 / k);
function wl = range_constraint_prop(rho, v, cd_0, k)
wl = 0.5 * rho * v^2 * sqrt(cd_0 / k);
function wl = endurance_constraint_jet(rho, v, cd_0, k)
wl = 0.5 * rho * v^2 * sqrt(cd_0 / k);
function wl = endurance_constraint_prop(rho, v, cd_0, k)
wl = 0.5 * rho * v^2 * sqrt(3 * cd_0 / k);
function wl = stall_speed_constraint(rho, v_s, c_lmax)
wl = 0.5 * rho * v_s^2 * c_lmax;
function ptl = cruise_speed_constraint_jet(wl, rho, v, cd_0, k)
ptl = 1 ./ (rho .* v.^2 .* cd_0 ./ 2 ./ wl + 2 .* k .* wl ./ rho ./ v.^2);
function ptl = cruise_speed_constraint_prop(wl, rho, v, cd_0, k, ee)
ptl = ee ./ (rho .* v.^3 .* cd_0 ./ 2 ./ wl + 2 .* k .* wl ./ rho ./ v);
function pl = climb_constraint_jet(wl, rho, v, cd_0, k, gg)
pl = 1 ./ (sind(gg) + rho .* v.^2 .* cd_0 ./ 2 ./ wl + 2 .* k .* wl ./ rho ./ v.^2);
function pl = climb_constraint_prop(wl, rho, v, cd_0, k, gg, ee)
pl = ee ./ (v .* sind(gg) + rho .* v.^3 .* cd_0 ./ 2 ./ wl + 2 .* k .* wl ./ rho ./ v);
function pl = climb_angle_constraint_jet(wl, rho, cd_0, k, gg)
pl = climb_constraint_jet(wl, rho, v_best_climb_angle_jet(wl, rho, k, cd_0), cd_0, k, gg); % TODO: Replace with segment speed
function pl = climb_angle_constraint_prop(wl, rho, cd_0, k, gg, ee)
pl = climb_constraint_prop(wl, rho, v_best_climb_angle_prop(wl, rho, k, cd_0), cd_0, k, gg, ee); % TODO: Replace with segment speed
% function pl = climb_rate(wl, rho, cd_0, k, gg, propulsion)
% if is_jet(propulsion)
% % pl = fsolve(@(x)climb_rate_jet_error(x, wl, rho, cd_0, k, gg, propulsion), 0.01, optimoptions('fsolve', 'Display','iter'));
% elseif is_prop(propulsion)
% pl = climb(wl, rho, v_best_climb_rate_prop(wl, rho, k, cd_0), cd_0, k, gg, propulsion);
% end
% function err = climb_rate_jet_error(tl, wl, rho, cd_0, k, gg, propulsion)
% err = climb(wl, rho, v_best_climb_rate_jet(tl, wl, rho, k, cd_0), cd_0, k, gg, propulsion) - tl;
% Forward flight constraint regions
function c = range_region_jet(wl, rho, v, cd_0, k)
c = wl < 0.5 * rho * v^2 * sqrt(cd_0 / 3 / k);
function c = range_region_prop(wl, rho, v, cd_0, k)
c = wl < 0.5 * rho * v^2 * sqrt(cd_0 / k);
function c = endurance_region_jet(wl, rho, v, cd_0, k)
c = wl < 0.5 * rho * v^2 * sqrt(cd_0 / k);
function c = endurance_region_prop(wl, rho, v, cd_0, k)
c = wl < 0.5 * rho * v^2 * sqrt(3 * cd_0 / k);
function c = stall_speed_region(rho, v_s, c_lmax)
c = wl < 0.5 * rho * v_s^2 * c_lmax;
function c = cruise_speed_region_jet(pl, wl, rho, v, cd_0, k)
c = pl < 1 ./ (rho .* v.^2 .* cd_0 ./ 2 ./ wl + 2 .* k .* wl ./ rho ./ v.^2);
function c = cruise_speed_region_prop(pl, wl, rho, v, cd_0, k, ee)
c = pl < ee ./ (rho .* v.^3 .* cd_0 ./ 2 ./ wl + 2 .* k .* wl ./ rho ./ v);
function c = climb_region_jet(pl, wl, rho, v, cd_0, k, gg)
c = pl < 1 ./ (sind(gg) + rho .* v.^2 .* cd_0 ./ 2 ./ wl + 2 .* k .* wl ./ rho ./ v.^2);
function c = climb_region_prop(pl, wl, rho, v, cd_0, k, gg, ee)
c = pl < ee ./ (v .* sind(gg) + rho .* v.^3 .* cd_0 ./ 2 ./ wl + 2 .* k .* wl ./ rho ./ v);
function c = climb_angle_region_jet(pl, wl, rho, cd_0, k, gg)
c = climb_region_jet(pl, wl, rho, v_best_climb_angle_jet(wl, rho, k, cd_0), cd_0, k, gg);
function c = climb_angle_region_prop(pl, wl, rho, cd_0, k, gg, ee)
c = climb_region_prop(pl, wl, rho, v_best_climb_angle_prop(wl, rho, k, cd_0), cd_0, k, gg, ee);