-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCode
206 lines (168 loc) · 8.08 KB
/
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import tkinter as tk
from tkinter import filedialog, messagebox, ttk
from PIL import Image, ImageTk
from pydub import AudioSegment
import torch
from torchvision import transforms
from concurrent.futures import ThreadPoolExecutor
import configparser
import cv2
# Placeholder functions for video processing with different AI models
def esrgan_upscale(image):
# Replace with actual ESRGAN upscaling logic
# Example using torchvision.transforms.functional
image_tensor = transforms.ToTensor()(image)
enhanced_tensor = torch.nn.functional.interpolate(image_tensor.unsqueeze(0), scale_factor=2, mode="bicubic")
enhanced_image = transforms.ToPILImage()(enhanced_tensor.squeeze(0))
return enhanced_image
def another_upscale_algorithm(image):
# Replace with another upscaling algorithm logic
pass
def yet_another_upscale_algorithm(image):
# Replace with another upscaling algorithm logic
pass
def final_upscale_algorithm(image):
# Replace with another upscaling algorithm logic
pass
# Additional open-source upscaling algorithms
def waifu2x_upscale(image):
# Replace with actual waifu2x upscaling logic
pass
def deepart_upscale(image):
# Replace with actual deepart upscaling logic
pass
def srresnet_upscale(image):
# Replace with actual SRResNet upscaling logic
pass
def espcn_upscale(image):
# Replace with actual ESPCN upscaling logic
pass
class VideoEnhancementTool:
def __init__(self, master):
master.title("Agro's Upscale Magic")
# Variables for file paths and enhancement options
self.video_file_path = tk.StringVar()
self.audio_file_path = tk.StringVar()
self.output_video_path = tk.StringVar()
self.selected_upscale_algorithm = tk.StringVar(value="esrgan") # Default algorithm
self.enable_async_processing = tk.BooleanVar(value=False) # Asynchronous processing option
self.output_video_format = tk.StringVar(value=".mp4") # Default output format
# Additional variables for configuration file
self.config_file_path = "config.ini"
# Set up GUI components
self.setup_gui(master)
def setup_gui(self, master):
# Title
self.title_label = tk.Label(master, text="Agro's Upscale Magic", font=("Arial", 24, "bold"), fg="#0a74da")
self.title_label.grid(row=0, column=0, columnspan=3, pady=10)
# File selection
self.video_label = tk.Label(master, text="Select Video File:")
self.video_entry = tk.Entry(master, textvariable=self.video_file_path, state="readonly", width=30)
self.video_browse_button = tk.Button(master, text="Browse", command=self.browse_video_file)
self.video_label.grid(row=1, column=0, pady=5, sticky="e")
self.video_entry.grid(row=1, column=1, pady=5)
self.video_browse_button.grid(row=1, column=2, pady=5)
# Enhancement options
self.algo_label = tk.Label(master, text="Select Upscaling Algorithm:")
self.algo_dropdown = ttk.Combobox(master, textvariable=self.selected_upscale_algorithm, values=["esrgan", "another", "yet_another", "final", "waifu2x", "deepart", "srresnet", "espcn"])
self.algo_label.grid(row=2, column=0, pady=5, sticky="e")
self.algo_dropdown.grid(row=2, column=1, pady=5)
self.async_checkbox = tk.Checkbutton(master, text="Enable Asynchronous Processing", variable=self.enable_async_processing)
self.async_checkbox.grid(row=3, column=0, pady=5, columnspan=2, sticky="w")
# Output format selection
self.format_label = tk.Label(master, text="Output Video Format:")
self.format_dropdown = ttk.Combobox(master, textvariable=self.output_video_format, values=[".mp4", ".avi", ".mkv"])
self.format_label.grid(row=3, column=0, pady=5, sticky="e")
self.format_dropdown.grid(row=3, column=1, pady=5)
# Process button
self.process_button = tk.Button(master, text="Enhance Video", command=self.process_video)
self.process_button.grid(row=4, column=0, columnspan=3, pady=10)
def browse_video_file(self):
file_path = filedialog.askopenfilename(filetypes=[("Video Files", "*.mp4;*.avi;*.mkv")])
if file_path:
self.video_file_path.setself.video_file_path.set(file_path)
self.update_video_preview()
def update_video_preview(self):
# Placeholder for updating the video preview based on selected options
pass
def save_configuration(self):
# Save current configuration to the configuration file
config = configparser.ConfigParser()
config['SETTINGS'] = {
'Algorithm': self.selected_upscale_algorithm.get(),
'AsyncProcessing': str(self.enable_async_processing.get()),
'OutputFormat': self.output_video_format.get()
}
with open(self.config_file_path, 'w') as configfile:
config.write(configfile)
def load_configuration(self):
# Load configuration from the configuration file
config = configparser.ConfigParser()
config.read(self.config_file_path)
if 'SETTINGS' in config:
settings = config['SETTINGS']
self.selected_upscale_algorithm.set(settings.get('Algorithm', 'esrgan'))
self.enable_async_processing.set(settings.getboolean('AsyncProcessing', False))
self.output_video_format.set(settings.get('OutputFormat', '.mp4'))
def process_video(self):
try:
video_path = self.video_file_path.get()
audio_path = self.audio_file_path.get()
output_path = self.output_video_path.get()
algorithm = self.selected_upscale_algorithm.get()
# Placeholder for actual video processing logic
frames = video_to_frames(video_path)
# Selecting the appropriate upscaling algorithm
upscale_function = {
"esrgan": esrgan_upscale,
"another": another_upscale_algorithm,
"yet_another": yet_another_upscale_algorithm,
"final": final_upscale_algorithm,
"waifu2x": waifu2x_upscale,
"deepart": deepart_upscale,
"srresnet": srresnet_upscale,
"espcn": espcn_upscale
}.get(algorithm, esrgan_upscale)
# Asynchronous processing
if self.enable_async_processing:
with ThreadPoolExecutor() as executor:
enhanced_frames = list(executor.map(upscale_function, frames))
else:
enhanced_frames = list(map(upscale_function, frames))
# Recombine frames and audio
self.recombine_frames_and_audio(enhanced_frames, audio_path, output_path)
self.save_configuration()
messagebox.showinfo("Enhancement Complete", "Video enhancement completed successfully!")
except Exception as e:
messagebox.showerror("Error", f"An error occurred: {str(e)}")
def recombine_frames_and_audio(self, enhanced_frames, audio_path, output_path):
# Placeholder for recombining frames and audio logic
# Example using OpenCV for frames and PyDub for audio
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_writer = cv2.VideoWriter(output_path, fourcc, 30.0, (enhanced_frames[0].width, enhanced_frames[0].height))
for frame in enhanced_frames:
video_writer.write(cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR))
video_writer.release()
audio = AudioSegment.from_file(audio_path)
audio.export(output_path, format=output_path.split('.')[-1])
def video_to_frames(video_path):
# Placeholder for converting video to frames logic
# Example using OpenCV
cap = cv2.VideoCapture(video_path)
frames = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_frame = Image.fromarray(frame)
frames.append(pil_frame)
cap.release()
return frames
def main():
root = tk.Tk()
app = VideoEnhancementTool(root)
root.mainloop()
if __name__ == "__main__":
main()