-
Notifications
You must be signed in to change notification settings - Fork 9
/
appnp.py
172 lines (155 loc) · 5.64 KB
/
appnp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse, time
import numpy as np
import dgl
import mxnet as mx
from mxnet import nd, gluon
from mxnet.gluon import nn
import dgl
from dgl.data import register_data_args
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
from dgl.nn.mxnet.conv import APPNPConv
class APPNP(nn.Block):
def __init__(self,
g,
in_feats,
hiddens,
n_classes,
activation,
feat_drop,
edge_drop,
alpha,
k):
super(APPNP, self).__init__()
self.g = g
with self.name_scope():
self.layers = nn.Sequential()
# input layer
self.layers.add(nn.Dense(hiddens[0], in_units=in_feats))
# hidden layers
for i in range(1, len(hiddens)):
self.layers.add(nn.Dense(hiddens[i], in_units=hiddens[i - 1]))
# output layer
self.layers.add(nn.Dense(n_classes, in_units=hiddens[-1]))
self.activation = activation
if feat_drop:
self.feat_drop = nn.Dropout(feat_drop)
else:
self.feat_drop = lambda x: x
self.propagate = APPNPConv(k, alpha, edge_drop)
def forward(self, features):
# prediction step
h = features
h = self.feat_drop(h)
h = self.activation(self.layers[0](h))
for layer in self.layers[1:-1]:
h = self.activation(layer(h))
h = self.layers[-1](self.feat_drop(h))
# propagation step
h = self.propagate(self.g, h)
return h
def evaluate(model, features, labels, mask):
pred = model(features).argmax(axis=1)
accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar()
return accuracy.asscalar()
def main(args):
# load and preprocess dataset
if args.dataset == 'cora':
data = CoraGraphDataset()
elif args.dataset == 'citeseer':
data = CiteseerGraphDataset()
elif args.dataset == 'pubmed':
data = PubmedGraphDataset()
else:
raise ValueError('Unknown dataset: {}'.format(args.dataset))
g = data[0]
if args.gpu < 0:
cuda = False
ctx = mx.cpu(0)
else:
cuda = True
ctx = mx.gpu(args.gpu)
g = g.to(ctx)
features = g.ndata['feat']
labels = mx.nd.array(g.ndata['label'], dtype="float32", ctx=ctx)
train_mask = g.ndata['train_mask']
val_mask = g.ndata['val_mask']
test_mask = g.ndata['test_mask']
in_feats = features.shape[1]
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()
print("""----Data statistics------'
#Edges %d
#Classes %d
#Train samples %d
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().asscalar(),
val_mask.sum().asscalar(),
test_mask.sum().asscalar()))
# add self loop
g = dgl.remove_self_loop(g)
g = dgl.add_self_loop(g)
# create APPNP model
model = APPNP(g,
in_feats,
args.hidden_sizes,
n_classes,
nd.relu,
args.in_drop,
args.edge_drop,
args.alpha,
args.k)
model.initialize(ctx=ctx)
n_train_samples = train_mask.sum().asscalar()
loss_fcn = gluon.loss.SoftmaxCELoss()
# use optimizer
print(model.collect_params())
trainer = gluon.Trainer(model.collect_params(), 'adam',
{'learning_rate': args.lr, 'wd': args.weight_decay})
# initialize graph
dur = []
for epoch in range(args.n_epochs):
if epoch >= 3:
t0 = time.time()
# forward
with mx.autograd.record():
pred = model(features)
loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
loss = loss.sum() / n_train_samples
loss.backward()
trainer.step(batch_size=1)
if epoch >= 3:
loss.asscalar()
dur.append(time.time() - t0)
acc = evaluate(model, features, labels, val_mask)
print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
"ETputs(KTEPS) {:.2f}". format(
epoch, np.mean(dur), loss.asscalar(), acc, n_edges / np.mean(dur) / 1000))
# test set accuracy
acc = evaluate(model, features, labels, test_mask)
print("Test accuracy {:.2%}".format(acc))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='APPNP')
register_data_args(parser)
parser.add_argument("--in-drop", type=float, default=0.5,
help="input feature dropout")
parser.add_argument("--edge-drop", type=float, default=0.5,
help="edge propagation dropout")
parser.add_argument("--gpu", type=int, default=-1,
help="gpu")
parser.add_argument("--lr", type=float, default=1e-2,
help="learning rate")
parser.add_argument("--n-epochs", type=int, default=200,
help="number of training epochs")
parser.add_argument("--hidden_sizes", type=int, nargs='+', default=[64],
help="hidden unit sizes for appnp")
parser.add_argument("--k", type=int, default=10,
help="Number of propagation steps")
parser.add_argument("--alpha", type=float, default=0.1,
help="Teleport Probability")
parser.add_argument("--weight-decay", type=float, default=5e-4,
help="Weight for L2 loss")
args = parser.parse_args()
print(args)
main(args)