- Paper link: arXiv OpenReview
- Author's code repo: https://github.com/weihua916/powerful-gnns.
- PyTorch 1.1.0+
- sklearn
- tqdm
bash pip install torch sklearn tqdm
An experiment on the GIN in default settings can be run with
python main.py
An experiment on the GIN in customized settings can be run with
python main.py [--device 0 | --disable-cuda] --dataset COLLAB \
--graph_pooling_type max --neighbor_pooling_type sum
Run with following with the double SUM pooling way: (tested dataset: "MUTAG"(default), "COLLAB", "IMDBBINARY", "IMDBMULTI")
python main.py --dataset MUTAG --device 0 \
--graph_pooling_type sum --neighbor_pooling_type sum
- MUTAG: 0.85 (paper: ~0.89)
- COLLAB: 0.89 (paper: ~0.80)
- IMDBBINARY: 0.76 (paper: ~0.75)
- IMDBMULTI: 0.51 (paper: ~0.52)