Skip to content

Latest commit

 

History

History
 
 

gin

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Graph Isomorphism Network (GIN)

Dependencies

  • PyTorch 1.1.0+
  • sklearn
  • tqdm

bash pip install torch sklearn tqdm

How to run

An experiment on the GIN in default settings can be run with

python main.py

An experiment on the GIN in customized settings can be run with

python main.py [--device 0 | --disable-cuda] --dataset COLLAB \
               --graph_pooling_type max --neighbor_pooling_type sum

Results

Run with following with the double SUM pooling way: (tested dataset: "MUTAG"(default), "COLLAB", "IMDBBINARY", "IMDBMULTI")

python main.py --dataset MUTAG --device 0  \
                --graph_pooling_type sum --neighbor_pooling_type sum
  • MUTAG: 0.85 (paper: ~0.89)
  • COLLAB: 0.89 (paper: ~0.80)
  • IMDBBINARY: 0.76 (paper: ~0.75)
  • IMDBMULTI: 0.51 (paper: ~0.52)