-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathconvert_dpr_retrieval_results_to_seq2seq.py
194 lines (165 loc) · 7.73 KB
/
convert_dpr_retrieval_results_to_seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import json
import random
import argparse
import csv
import os
from tqdm import tqdm
import jsonlines
def read_jsonlines(eval_file_name):
lines = []
print("loading examples from {0}".format(eval_file_name))
with jsonlines.open(eval_file_name) as reader:
for obj in reader:
lines.append(obj)
return lines
def load_dpr_results(pred_results, top_n=5, split="train", lang_balance=False, orig_xor_eng_ids=None, lang_dict=None):
q_c_a = []
has_answer = 0
for item in tqdm(pred_results):
question = item["question"]
answers = item["answers"]
q_id = item["q_id"]
ctxs = item["ctxs"]
for ctx in ctxs:
if ctx["has_answer"] == True:
has_answer += 1
break
if split == "train":
has_answer_context = []
has_no_answer_context = []
for ctx in ctxs:
if ctx["has_answer"] is True:
has_answer_context.append(ctx)
else:
has_no_answer_context.append(ctx)
if len(has_answer_context) > 3:
has_answer_context = random.sample(has_answer_context, k=3)
negative_context_num = top_n - len(has_answer_context)
has_no_answer_context = has_no_answer_context[:negative_context_num]
paragraphs = [item for item in has_answer_context]
paragraphs += [item for item in has_no_answer_context]
random.shuffle(paragraphs)
else:
paragraphs = [item for item in ctxs[:top_n]]
context = ""
for idx, para in enumerate(paragraphs):
if len(context) > 0 and context[-1] != " ":
context += " "
context += "<{0}: {1}> ".format(idx, para["title"])
context += para["text"]
if split != "train":
lang = item["lang"]
else:
if item["lang"] == "NONE":
lang = "en"
# XOR full train data come with English answers, so we set the target language to English.
elif item["lang"] != "NONE" and q_id in orig_xor_eng_ids:
lang = "en"
elif item["lang"] != "NONE" and q_id not in orig_xor_eng_ids:
lang = item["lang"]
else:
raise NotImplementedError
q_c_a.append({"question": question, "answers": answers,
"context": context, "lang": lang})
print("Generated {0} train data; {1} data includes answer string.".format(
len(q_c_a), has_answer))
return q_c_a
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--train_fp", default=None, type=str)
parser.add_argument("--dev_fp", default=None, type=str)
parser.add_argument("--test_fp", default=None, type=str)
parser.add_argument("--output_dir", default=None, type=str)
parser.add_argument("--top_n", default=5, type=int)
parser.add_argument("--add_lang", action="store_true")
parser.add_argument("--xor_engspan_train", default=None, type=str)
parser.add_argument("--xor_full_train", default=None, type=str)
parser.add_argument("--xor_full_dev", default=None, type=str)
args = parser.parse_args()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if args.train_fp is not None:
train_data = json.load(open(args.train_fp))
if args.dev_fp is not None:
dev_data = json.load(open(args.dev_fp))
if args.test_fp is not None:
test_data = json.load(open(args.test_fp))
if args.train_fp is not None:
if args.add_lang is True:
orig_xor_eng_ids = [item["id"]
for item in read_jsonlines(args.xor_engspan_train)]
lang_dict_train = {item["id"]: item["lang"]
for item in read_jsonlines(args.xor_full_train)}
s2s_train = load_dpr_results(
train_data, top_n=args.top_n, orig_xor_eng_ids=orig_xor_eng_ids, lang_dict=lang_dict_train)
else:
s2s_train = load_dpr_results(train_data, top_n=args.top_n)
source_f_train = open(os.path.join(
args.output_dir, "train.source"), "w")
target_f_train = open(os.path.join(
args.output_dir, "train.target"), "w")
for item in s2s_train:
if args.add_lang:
source_f_train.write("<Q>: {0} [{1}] <P>:{2}".format(
item["question"], item["lang"], item["context"]).replace("\n", "") + "\n")
else:
source_f_train.write("<Q>: {0} <P>:{1}".format(
item["question"], item["context"]).replace("\n", "") + "\n")
target_f_train.write(item["answers"][0].replace("\n", "") + "\n")
source_f_train.close()
target_f_train.close()
if args.dev_fp is not None:
if args.add_lang is True:
lang_dict_dev = {item["id"]: item["lang"]
for item in read_jsonlines(args.xor_full_dev)}
s2s_dev = load_dpr_results(
dev_data, top_n=args.top_n, split="dev", lang_dict=lang_dict_dev)
else:
s2s_dev = load_dpr_results(
dev_data, top_n=args.top_n, split="dev")
source_f_val = open(os.path.join(args.output_dir, "val.source"), "w")
target_f_val = open(os.path.join(args.output_dir, "val.target"), "w")
for item in s2s_dev:
if args.add_lang:
if args.top_n == 0:
source_f_val.write("<Q>: {0} [{1}]".format(
item["question"], item["lang"]).replace("\n", "") + "\n")
else:
source_f_val.write("<Q>: {0} [{1}] <P>:{2}".format(
item["question"], item["lang"], item["context"]).replace("\n", "") + "\n")
else:
if args.top_n == 0:
source_f_val.write("<Q>: {0}".format(
item["question"]).replace("\n", "") + "\n")
else:
source_f_val.write("<Q>: {0} <P>:{1}".format(
item["question"], item["context"]).replace("\n", "") + "\n")
target_f_val.write(item["answers"][0].replace("\n", "") + "\n")
source_f_val.close()
target_f_val.close()
with open(os.path.join(args.output_dir, "gold_para_qa_data_dev.tsv"), "w") as out_file:
tsv_writer = csv.writer(out_file, delimiter='\t')
for item in s2s_dev:
if args.add_lang:
tsv_writer.writerow(["<Q>: {0} [{1}] <P>:{2}".format(
item["question"], item["lang"], item["context"]), item["answers"]])
else:
tsv_writer.writerow(["<Q>: {0} <P>:{1}".format(
item["question"], item["context"]), item["answers"]])
if args.test_fp is not None:
s2s_test = load_dpr_results(test_data, top_n=args.top_n, split="test")
source_f_test = open(os.path.join(args.output_dir, "test.source"), "w")
target_f_test = open(os.path.join(args.output_dir, "test.target"), "w")
for item in s2s_test:
source_f_test.write("<Q>: {0} <P>:{1}".format(
item["question"], item["context"]).replace("\n", "") + "\n")
target_f_test.write(item["answers"][0].replace("\n", "") + "\n")
source_f_test.close()
target_f_test.close()
with open(os.path.join(args.output_dir, "gold_para_qa_data_test.tsv"), "w") as out_file:
tsv_writer = csv.writer(out_file, delimiter='\t')
for item in s2s_test:
tsv_writer.writerow(["<Q>: {0} <P>:{1}".format(
item["question"], item["context"]), item["answers"]])
if __name__ == "__main__":
main()