forked from henrikmarklund/arm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
172 lines (125 loc) · 5.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import random
import numpy as np
import torch
import torch.nn as nn
from tqdm import trange, tqdm
import wandb
import data
import utils
from algorithm import init_algorithm
os.environ['KMP_DUPLICATE_LIB_OK'] = "TRUE"
####################
###### TRAIN #######
####################
def run_epoch(algorithm, loader, train, progress_bar=True):
epoch_labels = []
epoch_logits = []
epoch_group_ids = []
if progress_bar:
loader = tqdm(loader, desc=f'{"train" if train else "eval"} loop')
for images, labels, group_ids in loader:
# Put on GPU
images = images.to(algorithm.device)
labels = labels.to(algorithm.device)
# Forward
if train:
logits, batch_stats = algorithm.learn(images, labels, group_ids)
if logits is None: # DANN
continue
else:
logits = algorithm.predict(images)
epoch_labels.append(labels.to('cpu').clone().detach())
epoch_logits.append(logits.to('cpu').clone().detach())
epoch_group_ids.append(group_ids.to('cpu').clone().detach())
return torch.cat(epoch_logits), torch.cat(epoch_labels), torch.cat(epoch_group_ids)
def train(args):
# Get data
train_loader, _, val_loader, _ = data.get_loaders(args)
args.n_groups = train_loader.dataset.n_groups
algorithm = init_algorithm(args, train_loader.dataset)
saver = utils.Saver(algorithm, args.device, args.ckpt_dir)
# Train loop
best_worst_case_acc = 0
for epoch in trange(args.num_epochs):
epoch_logits, epoch_labels, epoch_group_ids = run_epoch(algorithm, train_loader, train=True, progress_bar=args.progress_bar)
if epoch % args.epochs_per_eval == 0:
stats = eval_groupwise(args, algorithm, val_loader, epoch, split='val', n_samples_per_group=args.n_samples_per_group)
# Track early stopping values with respect to worst case.
if stats['val/worst_case_acc'] > best_worst_case_acc:
best_worst_case_acc = stats['val/worst_case_acc']
saver.save(epoch, is_best=True)
# Log early stopping values
if args.log_wandb:
wandb.log({"val/best_worst_case_acc": best_worst_case_acc})
print(f"\nEpoch: ", epoch, "\nWorst Case Acc: ", stats['val/worst_case_acc'])
##############################
###### Evaluate / Test #######
##############################
def get_group_iterator(loader, group, support_size, n_samples_per_group=None):
example_ids = np.nonzero(loader.dataset.group_ids == group)[0]
example_ids = example_ids[np.random.permutation(len(example_ids))] # Shuffle example ids
# Create batches
batches = []
X, Y, G = [], [], []
counter = 0
for i, idx in enumerate(example_ids):
x, y, g = loader.dataset[idx]
X.append(x); Y.append(y); G.append(g)
if (i + 1) % support_size == 0:
X, Y, G = torch.stack(X), torch.tensor(Y, dtype=torch.long), torch.tensor(G, dtype=torch.long)
batches.append((X, Y, G))
X, Y, G = [], [], []
if n_samples_per_group is not None and i == (n_samples_per_group - 1):
break
if X:
X, Y, G = torch.stack(X), torch.tensor(Y, dtype=torch.long), torch.tensor(G, dtype=torch.long)
batches.append((X, Y, G))
return batches
def eval_groupwise(args, algorithm, loader, epoch=None, split='val', n_samples_per_group=None):
""" Test model on groups and log to wandb
Separate script for femnist for speed."""
groups = []
accuracies = np.zeros(len(loader.dataset.groups))
num_examples = np.zeros(len(loader.dataset.groups))
if args.adapt_bn:
algorithm.train()
else:
algorithm.eval()
# Loop over each group
for i, group in tqdm(enumerate(loader.dataset.groups), desc='Evaluating', total=len(loader.dataset.groups)):
counter = 0
group_iterator = get_group_iterator(loader, group, args.support_size, n_samples_per_group)
logits, labels, group_ids = run_epoch(algorithm, group_iterator, train=False, progress_bar=False)
preds = np.argmax(logits, axis=1)
# Evaluate
accuracy = np.mean((preds == labels).numpy())
num_examples[group] = len(labels)
accuracies[group] = accuracy
if args.log_wandb:
if epoch is None:
wandb.log({f"{split}/acc": accuracy, # Gives us Acc vs Group Id
f"{split}/group_id": group})
else:
wandb.log({f"{split}/acc_e{epoch}": accuracy, # Gives us Acc vs Group Id
f"{split}/group_id": group})
# Log worst, average and empirical accuracy
worst_case_acc = np.amin(accuracies)
worst_case_group_size = num_examples[np.argmin(accuracies)]
num_examples = np.array(num_examples)
props = num_examples / num_examples.sum()
empirical_case_acc = accuracies.dot(props)
average_case_acc = np.mean(accuracies)
total_size = num_examples.sum()
stats = {
f'{split}/worst_case_acc': worst_case_acc,
f'{split}/worst_case_group_size': worst_case_group_size,
f'{split}/average_acc': average_case_acc,
f'{split}/total_size': total_size,
f'{split}/empirical_acc': empirical_case_acc
}
if epoch is not None:
stats['epoch'] = epoch
if args.log_wandb:
wandb.log(stats)
return stats