-
Notifications
You must be signed in to change notification settings - Fork 0
/
convolve.cpp
251 lines (181 loc) · 5.94 KB
/
convolve.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#include <fftw3.h>
#include <cmath>
#include <iostream>
#include "Buffer.h"
#include "types.h"
#include "libs/config_parser.h"
#include "wav.h"
#include "gnuplot_ipp/gnuplot_ipp.h"
#include "filters.h"
#include "extra.h"
#include <string.h> // memcpy
#include <limits.h>
#include "libs/timer.h"
using std::cout;
using std::endl;
#include <complex>
real complex_norm(real re, real im)
{
return sqrt(re*re + im*im);
}
/// @warn Might not behave well for n=odd!
/* READ!!: http://www.fftw.org/doc/The-Halfcomplex_002dformat-DFT.html */
void HC2magnitude(int N, real *hc, real *magnitude)
{
magnitude[0] = hc[0];
for (idx i=1; i < N/2; ++i)
magnitude[i] = complex_norm(hc[i], hc[N-i]); // Not true for odd N!!!
}
int valid_FFT_convolution(idx h_nonzero_size, idx FFT_N)
{
idx g_nonzero_size = FFT_N - h_nonzero_size + 1;
printf(
"FFT convolution with \n"
" FFT_N = %ld\n"
" g_size = %ld\n"
" h_size = %ld\n",
FFT_N, g_nonzero_size, h_nonzero_size);
if (g_nonzero_size < 1)
{
puts("Invalid configuration!");
return 0;
}
return 1;
}
inline void fillFFTblock(real *data, idx data_size, real *block, idx block_size)
{
idx i;
for (i=0; i < data_size; ++i)
block[i] = data[i];
for (i=data_size; i < block_size; ++i)
block[i] = 0.0;
// memset((void*)wav_out, 0, sizeof(real) * (N_wav+h_size-1));
// memcpy()
}
/**
Z = Z1*Z2
@param[in] re1 - Re{Z1}
@param[in] im1 - Im{Z1}
@param[in] re2 - Re{Z2}
@param[in] im2 - Im{Z2}
@param[out] re - Re{Z}
@param[out] im - Im{Z}
*/
inline void complex_multiply(real re1, real im1, real re2, real im2, real *re, real *im)
{
*re = re1*re2 - im1*im2;
*im = re1*im2 + im1*re2;
}
/**
HalfComplex representation multiply
@param[in] z1 - Input HC array
@param[in] z2 - Input HC array
@param[out] z - Output HC array
@param[in] size - Size of the HC array
@warn: ONLY FOR EVEN TRANSFORMATIONS!!!
*/
void hc_multiply (real *z1, real *z2, real *z, idx size)
{
z[0] = z1[0]*z2[0];
idx max_i = size/2;
for (idx i=1; i < max_i; ++i)
complex_multiply(z1[i], z1[size-i],
z2[i], z2[size-i],
&z[i], &z[size-i]);
}
int main(int argc, char **argv)
{
/* Name convention throughout this file:
i - input
o - output
m - magnitude
and capital letters for the frequency domain
*/
Gnuplot pwav, pi, po, pM, ph, p;
idx W_size , h_size ; // number of non-zero elements in the filter
idx g_overlap, h_overlap;
idx t;
fftw_plan forward_plan, backwards_plan, h_forward_plan;
real FFT_df;
idx FFT_N, FFT_spacing, FFT_pos;
int FFT_flags;
/// Read + plot input .wav
Guarantee(argc == 4, "Missing program options:\n \tconvolver <input_wav> <impulse_response_wav> <output_wav>");
SndfileHandle input_wav(argv[1]);
SndfileHandle input_h(argv[2]);
uint sample_rate_Hz = input_wav.samplerate();
Guarantee(input_wav.samplerate() == input_h.samplerate(), "Sampling rates must be the same.");
Guarantee(wav::ok(input_wav) && wav::ok(input_h), "One of the files doesn't exist.");
Guarantee(wav::mono(input_wav) && wav::mono(input_h), "Inputs must be mono.");
idx N_wav = input_wav.frames();
h_size = input_h.frames();
Buffer<real> wav(N_wav);
input_wav.read(wav(), N_wav);
printf("\nProcessing input file with %lu frames @ %u Hz.\n\n",
N_wav, sample_rate_Hz);
printf("Max int: %d\n"
"Max idx: %ld\n", INT_MAX, LONG_MAX);
printf("Indexing usage: %.2f%%\n\n", 0.01*(float)input_wav.frames()/(float)LONG_MAX);
/// FFT
// Wee need first the size of the impulse response to configure the convolution
puts("Measuring impulse response...");
W_size = h_size + 1; // +1 so FFT_N becomes a power of 2
FFT_N = W_size+h_size-1;
g_overlap = FFT_N-W_size;
h_overlap = FFT_N-h_size;
if ( ! valid_FFT_convolution(h_size, FFT_N) )
return -1;
Buffer<real> x(FFT_N, 0, fftw_malloc, fftw_free),
f(x), g(x), G(x), h(x), H(x), M(x), gh(x), GH(x);
Buffer<real> wav_out(N_wav+h_size-1);
input_h.read(h(), input_h.frames());
FFT_df = sample_rate_Hz / (real) FFT_N;
FFT_flags = FFTW_ESTIMATE; // Use wisdom + FFTW_EXHAUSTIVE later!
forward_plan = fftw_plan_r2r_1d(FFT_N, g() , G() , FFTW_R2HC, FFT_flags);
h_forward_plan = fftw_plan_r2r_1d(FFT_N, h() , H() , FFTW_R2HC, FFT_flags);
backwards_plan = fftw_plan_r2r_1d(FFT_N, GH(), gh(), FFTW_HC2R, FFT_flags);
// f
for (idx i=0; i < FFT_N; ++i)
f[i] = i * FFT_df;
fftw_execute(h_forward_plan);
ph.plot_y(h(), h.size(), "h(t)");
pM.set_labels("f (Hz)", "Magnitude");
pM.cmd("set logscale y");
HC2magnitude(FFT_N, H(), M());
pM.plot_xy(&f[1], &M[1], FFT_N/2-1, "|H(f)| AC");
Timer convolution_timer;
convolution_timer.start();
// wav_out.clear(); // Already clean (just declared)
if (FFT_N%2)
{
puts("Odd FFTs are not implemented!!!");
return EXIT_FAILURE;
}
real normalization_factor = 1/(real)FFT_N;
for (FFT_pos = 0; FFT_pos+FFT_N <= N_wav+h_size-1; FFT_pos += W_size)
{
fillFFTblock(&wav[FFT_pos], W_size, g(), FFT_N);
fftw_execute(forward_plan);
hc_multiply(G(), H(), GH(), FFT_N);
fftw_execute(backwards_plan);
// add
for (t = 0; t < W_size; ++t)
wav_out[FFT_pos+t] += gh[t] * normalization_factor;
// copy
for (t = W_size; t < FFT_N; ++t)
wav_out[FFT_pos+t] = gh[t] * normalization_factor;
}
convolution_timer.stop();
printf("Convolution execution time: %lf (s)\n", convolution_timer.getElapsedTimeInSec());
/* The maximum won't be for sure after the sound ends except after pathological cases
and we won't search in the negative space either. */
normalize_to(wav_out(), N_wav+h_size-1, max(wav_out(), N_wav+h_size-1));
p.plot_y(wav_out(), N_wav+h_size-1, "g*h");
wav::write_mono (argv[3], wav_out(), N_wav+h_size-1, sample_rate_Hz);
wait();
fftw_destroy_plan(forward_plan);
fftw_destroy_plan(h_forward_plan);
fftw_destroy_plan(backwards_plan);
puts("\nSuccess!");
return 0;
}