-
Notifications
You must be signed in to change notification settings - Fork 7
/
preprocess.py
267 lines (211 loc) · 14.4 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# -*- coding: utf-8 -*-
"""
@author: alexyang
@contact: [email protected]
@file: preprocess.py
@time: 2019/2/1 14:05
@desc:
"""
import os
import itertools
import time
import numpy as np
import pandas as pd
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
from config import SNLI_TRAIN_FILENAME, SNLI_DEV_FILENAME, SNLI_TEST_FILENAME, MULTINLI_TRAIN_FILENAME, \
MULTINLI_DEV_FILENAME, MLI_TRAIN_FILENAME, MLI_DEV_FILENAME, MLI_TEST_FILENAME, TRAIN_DATA_TEMPLATE, \
DEV_DATA_TEMPLATE, TEST_DATA_TEMPLATE, TRAIN_IDS_MATRIX_TEMPLATE, DEV_IDS_MATRIX_TEMPLATE, \
TEST_IDS_MATRIX_TEMPLATE, PROCESSED_DATA_DIR, LOG_DIR, MODEL_SAVED_DIR, EXTERNAL_WORD_VECTORS_FILENAME, \
EMBEDDING_MATRIX_TEMPLATE, TOKENIZER_TEMPLATE, VOCABULARY_TEMPLATE, ANALYSIS_LOG_TEMPLATE, IMG_DIR
from config import LABELS, GENRES
from config import ProcessConfig
from utils.data_loader import read_nli_data
from utils.text import get_tokens_from_parse, clean_data, stem_data
from utils.embedding import load_trained, train_w2v, train_glove, train_fasttext
from utils.analysis import analyze_len_distribution, analyze_class_distribution
from utils.io import pickle_dump, write_log, format_filename
def load_data():
"""Load SNLI, MultiNLI and MLI datasets into train/dev DataFrames"""
data_snli_train, data_snli_dev, data_snli_test = None, None, None
data_multinli_train, data_multinli_dev = None, None
data_mli_train, data_mli_dev, data_mli_test = None, None, None
# if SNLI_TRAIN_FILENAME.exists():
# data_snli_train = read_nli_data(SNLI_TRAIN_FILENAME, set_genre='snli')
# data_snli_dev = read_nli_data(SNLI_DEV_FILENAME, set_genre='snli')
# print('Logging Info - SNLI: train - {}, dev - {}'.format(data_snli_train.shape, data_snli_dev.shape))
if MULTINLI_TRAIN_FILENAME.exists():
data_multinli_train = read_nli_data(MULTINLI_TRAIN_FILENAME)
data_multinli_dev = read_nli_data(MULTINLI_DEV_FILENAME)
print('Logging Info - MultiNLI: train - {}, dev - {}'.format(data_multinli_train.shape, data_multinli_dev.shape))
if MLI_TRAIN_FILENAME.exists():
data_mli_train = read_nli_data(MLI_TRAIN_FILENAME, set_genre='mednli')
data_mli_dev = read_nli_data(MLI_DEV_FILENAME, set_genre='mednli')
print('Logging Info - MLI: train - {}, dev - {}'.format(data_mli_train.shape, data_mli_dev.shape))
# if SNLI_TEST_FILENAME.exists():
# data_snli_test = read_nli_data(SNLI_TEST_FILENAME, set_genre='snli')
# print('Logging Info - SNLI: test - {}'.format(data_snli_test.shape))
if MLI_TEST_FILENAME.exists():
data_mli_test = read_nli_data(MLI_TEST_FILENAME, set_genre='mednli')
print('Logging Info - MLI: test - {}'.format(data_mli_test.shape))
# Drop columns that are presented not in all datasets
columns_to_drop = ['captionID', 'promptID', 'annotator_labels']
for d in [data_snli_train, data_snli_dev, data_snli_test, data_multinli_train, data_multinli_dev, data_mli_train,
data_mli_dev, data_mli_test]:
if d is not None:
d.drop(columns_to_drop, axis=1, inplace=True, errors='ignore')
# concatenate all data together
data_train = pd.concat([data_snli_train, data_multinli_train, data_mli_train], axis=0)
data_dev = pd.concat([data_snli_dev, data_multinli_dev, data_mli_dev], axis=0)
data_test = pd.concat([data_snli_test, data_mli_test])
data_train.set_index('genre', inplace=True)
data_dev.set_index('genre', inplace=True)
data_test.set_index('genre', inplace=True)
return data_train, data_dev, data_test
def get_premise_hypothesis_label(data):
labels = data['gold_label'].map(LABELS).tolist()
premise_tokens = data['sentence1_binary_parse'].map(get_tokens_from_parse).tolist()
hypothesis_tokens = data['sentence2_binary_parse'].map(get_tokens_from_parse).tolist()
return {'premise': premise_tokens, 'hypothesis': hypothesis_tokens, 'label': labels}
def process_data(data, is_clean, is_stem):
data = get_premise_hypothesis_label(data)
print('Logging Info - Premise, hypothesis and label data got')
if is_clean:
data = clean_data(data)
print('Logging Info - Data cleaned')
if is_stem:
data = stem_data(data)
print('Logging Info - Data stemmed')
return data
def create_token_ids_matrix(tokenizer, sequences, padding, truncating, max_len=None):
tokens_ids = tokenizer.texts_to_sequences(sequences)
# there might be zero len sequences - fix it by putting a random token there (or id 1 in the worst case)
tokens_ids_flattened = list(itertools.chain.from_iterable(tokens_ids))
max_id = max(tokens_ids_flattened) if len(tokens_ids_flattened) > 0 else -1
text_lens = list()
for i in range(len(tokens_ids)):
if len(tokens_ids[i]) == 0:
id_to_put = np.random.randint(1, max_id) if max_id != -1 else 1
tokens_ids[i].append(id_to_put)
text_lens.append(max(len(tokens_ids[i]), 1))
print('Logging Info - pad sequence with max_len = %d' % max_len)
tokens_ids = pad_sequences(tokens_ids, maxlen=max_len, padding=padding, truncating=truncating)
return tokens_ids
def create_data_matrices(tokenizer, data, padding, truncating, n_class, max_len=None):
premise = create_token_ids_matrix(tokenizer, data['premise'], padding, truncating, max_len)
hypothesis = create_token_ids_matrix(tokenizer, data['hypothesis'], padding, truncating, max_len)
label = to_categorical(data['label'], n_class)
m_data = {
'premise': premise,
'hypothesis': hypothesis,
'label': label,
}
return m_data
def main():
process_conf = ProcessConfig()
# create directory
if not os.path.exists(PROCESSED_DATA_DIR):
os.makedirs(PROCESSED_DATA_DIR)
if not os.path.exists(LOG_DIR):
os.makedirs(LOG_DIR)
if not os.path.exists(MODEL_SAVED_DIR):
os.makedirs(MODEL_SAVED_DIR)
if not os.path.exists(IMG_DIR):
os.makedirs(IMG_DIR)
# load SNLI, MultiNLI and MLI datasets
data_train, data_dev, data_test = load_data()
print('Logging Info - Data: train - {}, dev - {}, test - {}'.format(data_train.shape, data_dev.shape,
data_test.shape))
for genre in GENRES:
if genre not in data_train.index:
continue
analyze_result = {}
genre_train = data_train.loc[genre]
genre_dev = data_dev.loc[genre]
genre_test = data_test.loc[genre] # might be None
print('Logging Info - Genre: {}, train - {}, dev - {}, test - {}'.format(genre, genre_train.shape,
genre_dev.shape, genre_test.shape))
analyze_result.update({'train_set': len(genre_train), 'dev_set': len(genre_dev),
'test_set': 0 if genre_test is None else len(genre_test)})
genre_train_data = process_data(genre_train, process_conf.clean, process_conf.stem)
genre_dev_data = process_data(genre_dev, process_conf.clean, process_conf.stem)
# class distribution analysis
train_label_distribution = analyze_class_distribution(genre_train_data['label'])
analyze_result.update(dict(('train_cls_{}'.format(cls), percent) for cls, percent in train_label_distribution.items()))
dev_label_distribution = analyze_class_distribution(genre_dev_data['label'])
analyze_result.update(dict(('dev_cls_{}'.format(cls), percent) for cls, percent in dev_label_distribution.items()))
# create tokenizer and vocabulary
sentences_train = genre_train_data['premise'] + genre_train_data['hypothesis']
sentences_dev = genre_dev_data['premise'] + genre_dev_data['hypothesis']
word_tokenizer = Tokenizer(lower=process_conf.lowercase, filters='', char_level=False)
char_tokenizer = Tokenizer(lower=process_conf.lowercase, filters='', char_level=True)
word_tokenizer.fit_on_texts(sentences_train) # just fit on train data
char_tokenizer.fit_on_texts(sentences_train)
print('Logging Info - Genre: {}, word_vocab: {}, char_vocab: {}'.format(genre, len(word_tokenizer.word_index),
len(char_tokenizer.word_index)))
analyze_result.update({'word_vocab': len(word_tokenizer.word_index),
'char_vocab': len(char_tokenizer.word_index)})
# length analysis
word_len_distribution, word_max_len = analyze_len_distribution(sentences_train, level='word')
analyze_result.update(dict(('word_{}'.format(k), v) for k, v in word_len_distribution.items()))
char_len_distribution, char_max_len = analyze_len_distribution(sentences_train, level='char')
analyze_result.update(dict(('char_{}'.format(k), v) for k, v in char_len_distribution.items()))
train_word_ids = create_data_matrices(word_tokenizer, genre_train_data, process_conf.padding,
process_conf.truncating, process_conf.n_class, word_max_len)
train_char_ids = create_data_matrices(char_tokenizer, genre_train_data, process_conf.padding,
process_conf.truncating, process_conf.n_class, char_max_len)
dev_word_ids = create_data_matrices(word_tokenizer, genre_dev_data, process_conf.padding,
process_conf.truncating, process_conf.n_class, word_max_len)
dev_char_ids = create_data_matrices(char_tokenizer, genre_dev_data, process_conf.padding,
process_conf.truncating, process_conf.n_class, char_max_len)
# create embedding matrix from pretrained word vectors
glove_cc = load_trained(EXTERNAL_WORD_VECTORS_FILENAME['glove_cc'], word_tokenizer.word_index)
fasttext_cc = load_trained(EXTERNAL_WORD_VECTORS_FILENAME['fasttext_cc'], word_tokenizer.word_index)
fasttext_wiki = load_trained(EXTERNAL_WORD_VECTORS_FILENAME['fasttext_wiki'], word_tokenizer.word_index)
# create embedding matrix by training on nil dataset
w2v_nil = train_w2v(sentences_train+sentences_dev, lambda x: x.split(), word_tokenizer.word_index)
c2v_nil = train_w2v(sentences_train+sentences_dev, lambda x: list(x), char_tokenizer.word_index)
w_fasttext_nil = train_fasttext(sentences_train + sentences_dev, lambda x: x.split(), word_tokenizer.word_index)
c_fasttext_nil = train_fasttext(sentences_train + sentences_dev, lambda x: list(x), char_tokenizer.word_index)
w_glove_nil = train_glove(sentences_train + sentences_dev, lambda x: x.split(), word_tokenizer.word_index)
c_glove_nil = train_glove(sentences_train + sentences_dev, lambda x: list(x), char_tokenizer.word_index)
# save pre-process data
pickle_dump(format_filename(PROCESSED_DATA_DIR, TRAIN_DATA_TEMPLATE, genre), genre_train_data)
pickle_dump(format_filename(PROCESSED_DATA_DIR, DEV_DATA_TEMPLATE, genre), genre_dev_data)
pickle_dump(format_filename(PROCESSED_DATA_DIR, TRAIN_IDS_MATRIX_TEMPLATE, genre, 'word'), train_word_ids)
pickle_dump(format_filename(PROCESSED_DATA_DIR, TRAIN_IDS_MATRIX_TEMPLATE, genre, 'char'), train_char_ids)
pickle_dump(format_filename(PROCESSED_DATA_DIR, DEV_IDS_MATRIX_TEMPLATE, genre, 'word'), dev_word_ids)
pickle_dump(format_filename(PROCESSED_DATA_DIR, DEV_IDS_MATRIX_TEMPLATE, genre, 'char'), dev_char_ids)
np.save(format_filename(PROCESSED_DATA_DIR, EMBEDDING_MATRIX_TEMPLATE, genre, 'glove_cc'), glove_cc)
np.save(format_filename(PROCESSED_DATA_DIR, EMBEDDING_MATRIX_TEMPLATE, genre, 'fasttext_cc'), fasttext_cc)
np.save(format_filename(PROCESSED_DATA_DIR, EMBEDDING_MATRIX_TEMPLATE, genre, 'fasttext_wiki'), fasttext_wiki)
np.save(format_filename(PROCESSED_DATA_DIR, EMBEDDING_MATRIX_TEMPLATE, genre, 'w2v_nil'), w2v_nil)
np.save(format_filename(PROCESSED_DATA_DIR, EMBEDDING_MATRIX_TEMPLATE, genre, 'c2v_nil'), c2v_nil)
np.save(format_filename(PROCESSED_DATA_DIR, EMBEDDING_MATRIX_TEMPLATE, genre, 'w_fasttext_nil'), w_fasttext_nil)
np.save(format_filename(PROCESSED_DATA_DIR, EMBEDDING_MATRIX_TEMPLATE, genre, 'c_fasttext_nil'), c_fasttext_nil)
np.save(format_filename(PROCESSED_DATA_DIR, EMBEDDING_MATRIX_TEMPLATE, genre, 'w_glove_nil'), w_glove_nil)
np.save(format_filename(PROCESSED_DATA_DIR, EMBEDDING_MATRIX_TEMPLATE, genre, 'c_glove_nil'), c_glove_nil)
pickle_dump(format_filename(PROCESSED_DATA_DIR, TOKENIZER_TEMPLATE, genre, 'word'), word_tokenizer)
pickle_dump(format_filename(PROCESSED_DATA_DIR, TOKENIZER_TEMPLATE, genre, 'char'), char_tokenizer)
pickle_dump(format_filename(PROCESSED_DATA_DIR, VOCABULARY_TEMPLATE, genre, 'word'), word_tokenizer.word_index)
pickle_dump(format_filename(PROCESSED_DATA_DIR, VOCABULARY_TEMPLATE, genre, 'char'), char_tokenizer.word_index)
if genre_test is not None:
genre_test_data = process_data(genre_test, process_conf.clean, process_conf.stem)
test_label_distribution = analyze_class_distribution(genre_test_data['label'])
analyze_result.update(
dict(('test_cls_%d' % cls, percent) for cls, percent in test_label_distribution.items()))
test_word_ids = create_data_matrices(word_tokenizer, genre_test_data, process_conf.padding,
process_conf.truncating, process_conf.n_class,
word_max_len)
test_char_ids = create_data_matrices(char_tokenizer, genre_test_data, process_conf.padding,
process_conf.truncating, process_conf.n_class,
char_max_len)
pickle_dump(format_filename(PROCESSED_DATA_DIR, TEST_DATA_TEMPLATE, genre), genre_test_data)
pickle_dump(format_filename(PROCESSED_DATA_DIR, TEST_IDS_MATRIX_TEMPLATE, genre, 'word'), test_word_ids)
pickle_dump(format_filename(PROCESSED_DATA_DIR, TEST_IDS_MATRIX_TEMPLATE, genre, 'char'), test_char_ids)
# save analyze result
analyze_result['timestamp'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime())
write_log(format_filename(LOG_DIR, ANALYSIS_LOG_TEMPLATE, genre), analyze_result)
if __name__ == '__main__':
main()