-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathprojection.py
51 lines (36 loc) · 1.25 KB
/
projection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
os.environ["CUDA_VISIBLE_DEVICES"] = ""
import nobuco
from nobuco import ChannelOrder, ChannelOrderingStrategy
from nobuco.layers.weight import WeightLayer
import torch
from torch import nn
import tensorflow as tf
from tensorflow.lite.python.lite import TFLiteConverter
import keras
class DummyModel(nn.Module):
def __init__(self):
super().__init__()
def forward(self, qkv, w, b):
x = torch.nn.functional._in_projection_packed(qkv, qkv, qkv, w, b)
return x
model = DummyModel()
qkv = torch.randn(50, 1, 1024)
w = torch.randn(3072, 1024)
b = torch.randn(3072)
keras_model = nobuco.pytorch_to_keras(
model,
args=[qkv, w, b],
# inputs_channel_order=ChannelOrder.PYTORCH,
)
model_path = 'projection'
keras_model.save(model_path + '.h5')
print('Model saved')
custom_objects = {'WeightLayer': WeightLayer}
keras_model_restored = keras.models.load_model(model_path + '.h5', custom_objects=custom_objects)
print('Model loaded')
converter = TFLiteConverter.from_keras_model_file(model_path + '.h5', custom_objects=custom_objects)
converter.target_ops = [tf.lite.OpsSet.SELECT_TF_OPS, tf.lite.OpsSet.TFLITE_BUILTINS]
tflite_model = converter.convert()
with open(model_path + '.tflite', 'wb') as f:
f.write(tflite_model)