-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathyolo5.py
44 lines (30 loc) · 1.22 KB
/
yolo5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
os.environ["CUDA_VISIBLE_DEVICES"] = ""
import nobuco
from nobuco import ChannelOrder, ChannelOrderingStrategy, TraceLevel
from nobuco.layers.weight import WeightLayer
import torch
import tensorflow as tf
from tensorflow.lite.python.lite import TFLiteConverter
import keras
device = 'cpu'
x = torch.rand(size=(1, 3, 320, 320)).to(device)
pytorch_module = torch.hub.load("ultralytics/yolov5", "yolov5s", pretrained=True).eval().to(device) # or yolov5n - yolov5x6, custom
# Dry run to create model buffers which creation we don't want to trace
pytorch_module(x)
keras_model = nobuco.pytorch_to_keras(
pytorch_module,
args=[x],
inputs_channel_order=ChannelOrder.TENSORFLOW,
)
model_path = 'yolo5'
keras_model.save(model_path + '.h5')
print('Model saved')
custom_objects = {'WeightLayer': WeightLayer}
keras_model_restored = keras.models.load_model(model_path + '.h5', custom_objects=custom_objects)
print('Model loaded')
converter = TFLiteConverter.from_keras_model_file(model_path + '.h5', custom_objects=custom_objects)
converter.target_ops = [tf.lite.OpsSet.SELECT_TF_OPS, tf.lite.OpsSet.TFLITE_BUILTINS]
tflite_model = converter.convert()
with open(model_path + '.tflite', 'wb') as f:
f.write(tflite_model)