Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Exception: Unimplemented nodes #62

Open
kabyanil opened this issue Aug 1, 2024 · 1 comment
Open

Exception: Unimplemented nodes #62

kabyanil opened this issue Aug 1, 2024 · 1 comment

Comments

@kabyanil
Copy link

kabyanil commented Aug 1, 2024

I am converting the modules of a transformer model from pytorch to tflite. Here is my conversion code -

sample_input = torch.randint(low=0, high=60, size =(1, 32, 512), dtype=torch.float)

src_pos_module = model.src_pos.eval()

src_pos_keras = nobuco.pytorch_to_keras(
    src_pos_module,
    args=[sample_input], kwargs=None,
    inputs_channel_order=ChannelOrder.TENSORFLOW,
    outputs_channel_order=ChannelOrder.TENSORFLOW,
    debug_traces=True
)

src_pos_keras.save(f"{common_dir}/src_pos.keras")

Here is my implementation of the positional encoding layer -

class PositionalEncoding(nn.Module):

    def __init__(self, d_model: int, seq_len: int, dropout: float) -> None:
        super().__init__()
        self.d_model = d_model
        self.seq_len = seq_len
        self.dropout = nn.Dropout(dropout)
        # Create a matrix of shape (seq_len, d_model)
        pe = torch.zeros(seq_len, d_model)
        # Create a vector of shape (seq_len)
        position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1) # (seq_len, 1)
        # Create a vector of shape (d_model)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) # (d_model / 2)
        # Apply sine to even indices
        pe[:, 0::2] = torch.sin(position * div_term) # sin(position * (10000 ** (2i / d_model))
        # Apply cosine to odd indices
        pe[:, 1::2] = torch.cos(position * div_term) # cos(position * (10000 ** (2i / d_model))
        # Add a batch dimension to the positional encoding
        pe = pe.unsqueeze(0) # (1, seq_len, d_model)
        # Register the positional encoding as a buffer
        self.register_buffer('pe', pe)

    def forward(self, x):

        # x = x + (self.pe[:, :x.shape[1], :]).requires_grad_(False) # (batch, seq_len, d_model)
        x = x + (self.pe[:, :x.shape[1], :]).requires_grad_(False) # (batch, seq_len, d_model)
        return self.dropout(x)

Here is the error I am getting -

[Nobuco] Tracing (DONE): 4 ops [00:00]
[Nobuco] Converting (DONE): |██████▋   | 2/3 ops [00:00]
Legend:
    Green — conversion successful
    Yellow — conversion imprecise
    Red — conversion failed
    Red — no converter found
    Bold — conversion applied directly
    * — subgraph reused
    Tensor — this output is not dependent on any of subgraph's input tensors
    Tensor — this input is a parameter / constant
    Tensor — this tensor is useless

PositionalEncoding[__main__](float32_0<1,32,512>) -> float32_2<1,32,512>
 │  requires_grad_[torch.Tensor](float32_1<1,32,512>, False) -> float32_1<1,32,512>
 │  __add__[torch.Tensor](float32_0<1,32,512>, float32_1<1,32,512>) -> float32_2<1,32,512>
 │   └· add[TensorBase](float32_0<1,32,512>, float32_1<1,32,512>) -> float32_2<1,32,512>
 ├· Dropout[torch.nn.modules.dropout](float32_2<1,32,512>) -> float32_2<1,32,512>
 └   └· dropout[torch.nn.functional](float32_2<1,32,512>, 0.1, False, False) -> float32_2<1,32,512>

Unimplemented nodes:
PositionalEncoding[__main__](float32_0<1,32,512>) -> float32_2<1,32,512>
 │  requires_grad_[torch.Tensor](float32_1<1,32,512>, False) -> float32_1<1,32,512>

Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/nobuco/converters/validation.py", line 47, in validate
    diffs = validate_diff_default(keras_op, pytorch_op, input_args, input_kwargs, output_tensors)
  File "/usr/local/lib/python3.10/dist-packages/nobuco/converters/validation.py", line 72, in validate_diff_default
    outputs_tf = keras_op(*args_tf, **kwargs_tf)
  File "/usr/local/lib/python3.10/dist-packages/nobuco/layers/stub.py", line 7, in __call__
    raise Exception(f'Unimplemented op: {self.original_node}')
Exception: Unimplemented op: <method 'requires_grad_' of 'torch._C.TensorBase' objects>
Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/nobuco/converters/validation.py", line 47, in validate
    diffs = validate_diff_default(keras_op, pytorch_op, input_args, input_kwargs, output_tensors)
  File "/usr/local/lib/python3.10/dist-packages/nobuco/converters/validation.py", line 70, in validate_diff_default
    keras_op.reset_states()
  File "/usr/local/lib/python3.10/dist-packages/nobuco/layers/container.py", line 82, in reset_states
    op.reset_states()
AttributeError: 'UnimplementedOpStub' object has no attribute 'reset_states'
---------------------------------------------------------------------------
Exception                                 Traceback (most recent call last)
[<ipython-input-36-cd7ea28a6126>](https://localhost:8080/#) in <cell line: 7>()
      5 src_pos_module = model.src_pos.eval()
      6 
----> 7 src_pos_keras = nobuco.pytorch_to_keras(
      8     src_pos_module,
      9     args=[sample_input], kwargs=None,

[/usr/local/lib/python3.10/dist-packages/nobuco/convert.py](https://localhost:8080/#) in pytorch_to_keras(model, args, kwargs, input_shapes, inputs_channel_order, outputs_channel_order, input_names, output_names, trace_shape, enable_torch_tracing, constants_to_variables, full_validation, validation_tolerance, return_outputs_pt, save_trace_html, debug_traces)
    363         print('Unimplemented nodes:')
    364         print(unimplemented_hierarchy.__str__(**vis_params))
--> 365         raise Exception('Unimplemented nodes')
    366 
    367     keras_op = keras_converted_node.keras_op

Exception: Unimplemented nodes
@johndpope
Copy link

need more info on model to help -
try upgrading
pip install nobuco -U

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants