forked from Farama-Foundation/HighwayEnv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsb3_highway_ppo_transformer.py
414 lines (360 loc) · 13.5 KB
/
sb3_highway_ppo_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import functools
import gymnasium as gym
import numpy as np
import pygame
import seaborn as sns
import torch
import torch as th
import torch.nn as nn
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.torch_layers import BaseFeaturesExtractor
from stable_baselines3.common.vec_env import SubprocVecEnv
from torch.distributions import Categorical
from torch.nn import functional as F
import highway_env # noqa: F401
from highway_env.utils import lmap
# ==================================
# Policy Architecture
# ==================================
def activation_factory(activation_type):
if activation_type == "RELU":
return F.relu
elif activation_type == "TANH":
return torch.tanh
elif activation_type == "ELU":
return nn.ELU()
else:
raise ValueError(f"Unknown activation_type: {activation_type}")
class BaseModule(torch.nn.Module):
"""
Base torch.nn.Module implementing basic features:
- initialization factory
- normalization parameters
"""
def __init__(self, activation_type="RELU", reset_type="XAVIER"):
super().__init__()
self.activation = activation_factory(activation_type)
self.reset_type = reset_type
def _init_weights(self, m):
if hasattr(m, "weight"):
if self.reset_type == "XAVIER":
torch.nn.init.xavier_uniform_(m.weight.data)
elif self.reset_type == "ZEROS":
torch.nn.init.constant_(m.weight.data, 0.0)
else:
raise ValueError("Unknown reset type")
if hasattr(m, "bias") and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
def reset(self):
self.apply(self._init_weights)
class MultiLayerPerceptron(BaseModule):
def __init__(
self,
in_size=None,
layer_sizes=None,
reshape=True,
out_size=None,
activation="RELU",
is_policy=False,
**kwargs,
):
super().__init__(**kwargs)
self.reshape = reshape
self.layer_sizes = layer_sizes or [64, 64]
self.out_size = out_size
self.activation = activation_factory(activation)
self.is_policy = is_policy
self.softmax = nn.Softmax(dim=-1)
sizes = [in_size] + self.layer_sizes
layers_list = [nn.Linear(sizes[i], sizes[i + 1]) for i in range(len(sizes) - 1)]
self.layers = nn.ModuleList(layers_list)
if out_size:
self.predict = nn.Linear(sizes[-1], out_size)
def forward(self, x):
if self.reshape:
x = x.reshape(x.shape[0], -1) # We expect a batch of vectors
for layer in self.layers:
x = self.activation(layer(x.float()))
if self.out_size:
x = self.predict(x)
if self.is_policy:
action_probs = self.softmax(x)
dist = Categorical(action_probs)
return dist
return x
def action_scores(self, x):
if self.is_policy:
if self.reshape:
x = x.reshape(x.shape[0], -1) # We expect a batch of vectors
for layer in self.layers:
x = self.activation(layer(x.float()))
if self.out_size:
action_scores = self.predict(x)
return action_scores
class EgoAttention(BaseModule):
def __init__(self, feature_size=64, heads=4, dropout_factor=0):
super().__init__()
self.feature_size = feature_size
self.heads = heads
self.dropout_factor = dropout_factor
self.features_per_head = int(self.feature_size / self.heads)
self.value_all = nn.Linear(self.feature_size, self.feature_size, bias=False)
self.key_all = nn.Linear(self.feature_size, self.feature_size, bias=False)
self.query_ego = nn.Linear(self.feature_size, self.feature_size, bias=False)
self.attention_combine = nn.Linear(
self.feature_size, self.feature_size, bias=False
)
@classmethod
def default_config(cls):
return {}
def forward(self, ego, others, mask=None):
batch_size = others.shape[0]
n_entities = others.shape[1] + 1
input_all = torch.cat(
(ego.view(batch_size, 1, self.feature_size), others), dim=1
)
# Dimensions: Batch, entity, head, feature_per_head
key_all = self.key_all(input_all).view(
batch_size, n_entities, self.heads, self.features_per_head
)
value_all = self.value_all(input_all).view(
batch_size, n_entities, self.heads, self.features_per_head
)
query_ego = self.query_ego(ego).view(
batch_size, 1, self.heads, self.features_per_head
)
# Dimensions: Batch, head, entity, feature_per_head
key_all = key_all.permute(0, 2, 1, 3)
value_all = value_all.permute(0, 2, 1, 3)
query_ego = query_ego.permute(0, 2, 1, 3)
if mask is not None:
mask = mask.view((batch_size, 1, 1, n_entities)).repeat(
(1, self.heads, 1, 1)
)
value, attention_matrix = attention(
query_ego, key_all, value_all, mask, nn.Dropout(self.dropout_factor)
)
result = (
self.attention_combine(value.reshape((batch_size, self.feature_size)))
+ ego.squeeze(1)
) / 2
return result, attention_matrix
class EgoAttentionNetwork(BaseModule):
def __init__(
self,
in_size=None,
out_size=None,
presence_feature_idx=0,
embedding_layer_kwargs=None,
attention_layer_kwargs=None,
**kwargs,
):
super().__init__(**kwargs)
self.out_size = out_size
self.presence_feature_idx = presence_feature_idx
embedding_layer_kwargs = embedding_layer_kwargs or {}
if not embedding_layer_kwargs.get("in_size", None):
embedding_layer_kwargs["in_size"] = in_size
self.ego_embedding = MultiLayerPerceptron(**embedding_layer_kwargs)
self.embedding = MultiLayerPerceptron(**embedding_layer_kwargs)
attention_layer_kwargs = attention_layer_kwargs or {}
self.attention_layer = EgoAttention(**attention_layer_kwargs)
def forward(self, x):
ego_embedded_att, _ = self.forward_attention(x)
return ego_embedded_att
def split_input(self, x, mask=None):
# Dims: batch, entities, features
if len(x.shape) == 2:
x = x.unsqueeze(axis=0)
ego = x[:, 0:1, :]
others = x[:, 1:, :]
if mask is None:
aux = self.presence_feature_idx
mask = x[:, :, aux : aux + 1] < 0.5
return ego, others, mask
def forward_attention(self, x):
ego, others, mask = self.split_input(x)
ego = self.ego_embedding(ego)
others = self.embedding(others)
return self.attention_layer(ego, others, mask)
def get_attention_matrix(self, x):
_, attention_matrix = self.forward_attention(x)
return attention_matrix
def attention(query, key, value, mask=None, dropout=None):
"""
Compute a Scaled Dot Product Attention.
Parameters
----------
query
size: batch, head, 1 (ego-entity), features
key
size: batch, head, entities, features
value
size: batch, head, entities, features
mask
size: batch, head, 1 (absence feature), 1 (ego-entity)
dropout
Returns
-------
The attention softmax(QK^T/sqrt(dk))V
"""
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / np.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask, -1e9)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
output = torch.matmul(p_attn, value)
return output, p_attn
attention_network_kwargs = dict(
in_size=5 * 15,
embedding_layer_kwargs={"in_size": 7, "layer_sizes": [64, 64], "reshape": False},
attention_layer_kwargs={"feature_size": 64, "heads": 2},
)
class CustomExtractor(BaseFeaturesExtractor):
"""
:param observation_space: (gym.Space)
:param features_dim: (int) Number of features extracted.
This corresponds to the number of unit for the last layer.
"""
def __init__(self, observation_space: gym.spaces.Box, **kwargs):
super().__init__(
observation_space,
features_dim=kwargs["attention_layer_kwargs"]["feature_size"],
)
self.extractor = EgoAttentionNetwork(**kwargs)
def forward(self, observations: th.Tensor) -> th.Tensor:
return self.extractor(observations)
# ==================================
# Environment configuration
# ==================================
def make_configure_env(**kwargs):
env = gym.make(kwargs["id"], config=kwargs["config"])
env.reset()
return env
env_kwargs = {
"id": "highway-v0",
"config": {
"lanes_count": 3,
"vehicles_count": 15,
"observation": {
"type": "Kinematics",
"vehicles_count": 10,
"features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"],
"absolute": False,
},
"policy_frequency": 2,
"duration": 40,
},
}
# ==================================
# Display attention matrix
# ==================================
def display_vehicles_attention(
agent_surface, sim_surface, env, model, min_attention=0.01
):
v_attention = compute_vehicles_attention(env, model)
for head in range(list(v_attention.values())[0].shape[0]):
attention_surface = pygame.Surface(sim_surface.get_size(), pygame.SRCALPHA)
for vehicle, attention in v_attention.items():
if attention[head] < min_attention:
continue
width = attention[head] * 5
desat = np.clip(lmap(attention[head], (0, 0.5), (0.7, 1)), 0.7, 1)
colors = sns.color_palette("dark", desat=desat)
color = np.array(colors[(2 * head) % (len(colors) - 1)]) * 255
color = (
*color,
np.clip(lmap(attention[head], (0, 0.5), (100, 200)), 100, 200),
)
if vehicle is env.vehicle:
pygame.draw.circle(
attention_surface,
color,
sim_surface.vec2pix(env.vehicle.position),
max(sim_surface.pix(width / 2), 1),
)
else:
pygame.draw.line(
attention_surface,
color,
sim_surface.vec2pix(env.vehicle.position),
sim_surface.vec2pix(vehicle.position),
max(sim_surface.pix(width), 1),
)
sim_surface.blit(attention_surface, (0, 0))
def compute_vehicles_attention(env, model):
obs = env.unwrapped.observation_type.observe()
obs_t = torch.tensor(obs[None, ...], dtype=torch.float)
attention = model.policy.features_extractor.extractor.get_attention_matrix(obs_t)
attention = attention.squeeze(0).squeeze(1).detach().cpu().numpy()
ego, others, mask = model.policy.features_extractor.extractor.split_input(obs_t)
mask = mask.squeeze()
v_attention = {}
obs_type = env.observation_type
if hasattr(obs_type, "agents_observation_types"): # Handle multi-agent observation
obs_type = obs_type.agents_observation_types[0]
for v_index in range(obs.shape[0]):
if mask[v_index]:
continue
v_position = {}
for feature in ["x", "y"]:
v_feature = obs[v_index, obs_type.features.index(feature)]
v_feature = lmap(v_feature, [-1, 1], obs_type.features_range[feature])
v_position[feature] = v_feature
v_position = np.array([v_position["x"], v_position["y"]])
if not obs_type.absolute and v_index > 0:
v_position += env.unwrapped.vehicle.position
vehicle = min(
env.unwrapped.road.vehicles,
key=lambda v: np.linalg.norm(v.position - v_position),
)
v_attention[vehicle] = attention[:, v_index]
return v_attention
# ==================================
# Main script
# ==================================
if __name__ == "__main__":
train = True
if train:
n_cpu = 4
policy_kwargs = dict(
features_extractor_class=CustomExtractor,
features_extractor_kwargs=attention_network_kwargs,
)
env = make_vec_env(
make_configure_env,
n_envs=n_cpu,
seed=0,
vec_env_cls=SubprocVecEnv,
env_kwargs=env_kwargs,
)
model = PPO(
"MlpPolicy",
env,
n_steps=512 // n_cpu,
batch_size=64,
learning_rate=2e-3,
policy_kwargs=policy_kwargs,
verbose=2,
tensorboard_log="highway_attention_ppo/",
)
# Train the agent
model.learn(total_timesteps=200 * 1000)
# Save the agent
model.save("highway_attention_ppo/model")
model = PPO.load("highway_attention_ppo/model")
env = make_configure_env(**env_kwargs)
env.render()
env.viewer.set_agent_display(
functools.partial(display_vehicles_attention, env=env, model=model)
)
for _ in range(5):
obs, info = env.reset()
done = truncated = False
while not (done or truncated):
action, _ = model.predict(obs)
obs, reward, done, truncated, info = env.step(action)
env.render()