-
Notifications
You must be signed in to change notification settings - Fork 0
/
120.triangle.cpp
94 lines (90 loc) · 2.33 KB
/
120.triangle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/*
* @lc app=leetcode id=120 lang=cpp
*
* [120] Triangle
*
* https://leetcode.com/problems/triangle/description/
*
* algorithms
* Medium (45.35%)
* Likes: 3004
* Dislikes: 316
* Total Accepted: 307.9K
* Total Submissions: 658.5K
* Testcase Example: '[[2],[3,4],[6,5,7],[4,1,8,3]]'
*
* Given a triangle array, return the minimum path sum from top to bottom.
*
* For each step, you may move to an adjacent number of the row below. More
* formally, if you are on index i on the current row, you may move to either
* index i or index i + 1 on the next row.
*
*
* Example 1:
*
*
* Input: triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
* Output: 11
* Explanation: The triangle looks like:
* 2
* 3 4
* 6 5 7
* 4 1 8 3
* The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined
* above).
*
*
* Example 2:
*
*
* Input: triangle = [[-10]]
* Output: -10
*
*
*
* Constraints:
*
*
* 1 <= triangle.length <= 200
* triangle[0].length == 1
* triangle[i].length == triangle[i - 1].length + 1
* -10^4 <= triangle[i][j] <= 10^4
*
*
*
* Follow up: Could you do this using only O(n) extra space, where n is the
* total number of rows in the triangle?
*/
// @lc code=start
class Solution {
public:
int minimumTotal1(vector<vector<int>>& triangle) {
int sum = INT_MAX;
int rows = triangle.size();
for (int i = 1; i < rows; ++i) {
for (int j = 0; j < triangle[i].size(); ++j) {
int minV = INT_MAX;
if (j > 0)
minV = triangle[i - 1][j - 1];
if (j < i)
minV = min(triangle[i - 1][j], minV);
int path = minV + triangle[i][j];
triangle[i][j] = path;
}
}
for (int i = 0; i < triangle[rows - 1].size(); ++i)
sum = min(sum, triangle[rows - 1][i]);
return sum;
}
int minimumTotal(vector<vector<int>>& triangle) {
int rows = triangle.size();
vector<int> res(triangle[rows - 1].begin(), triangle[rows - 1].end());
for (int i = rows - 2; i >= 0; i--) {
for (int j = 0; j < triangle[i].size(); ++j) {
res[j] = min(res[j], res[j + 1]) + triangle[i][j];
}
}
return res[0];
}
};
// @lc code=end