-
Notifications
You must be signed in to change notification settings - Fork 0
/
1329.sort-the-matrix-diagonally.cpp
81 lines (77 loc) · 2.02 KB
/
1329.sort-the-matrix-diagonally.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/*
* @lc app=leetcode id=1329 lang=cpp
*
* [1329] Sort the Matrix Diagonally
*
* https://leetcode.com/problems/sort-the-matrix-diagonally/description/
*
* algorithms
* Medium (79.30%)
* Likes: 819
* Dislikes: 148
* Total Accepted: 50.3K
* Total Submissions: 61.5K
* Testcase Example: '[[3,3,1,1],[2,2,1,2],[1,1,1,2]]'
*
* A matrix diagonal is a diagonal line of cells starting from some cell in
* either the topmost row or leftmost column and going in the bottom-right
* direction until reaching the matrix's end. For example, the matrix diagonal
* starting from mat[2][0], where mat is a 6 x 3 matrix, includes cells
* mat[2][0], mat[3][1], and mat[4][2].
*
* Given an m x n matrix mat of integers, sort each matrix diagonal in
* ascending order and return the resulting matrix.
*
*
* Example 1:
*
*
* Input: mat = [[3,3,1,1],[2,2,1,2],[1,1,1,2]]
* Output: [[1,1,1,1],[1,2,2,2],[1,2,3,3]]
*
*
* Example 2:
*
*
* Input: mat =
* [[11,25,66,1,69,7],[23,55,17,45,15,52],[75,31,36,44,58,8],[22,27,33,25,68,4],[84,28,14,11,5,50]]
* Output:
* [[5,17,4,1,52,7],[11,11,25,45,8,69],[14,23,25,44,58,15],[22,27,31,36,50,66],[84,28,75,33,55,68]]
*
*
*
* Constraints:
*
*
* m == mat.length
* n == mat[i].length
* 1 <= m, n <= 100
* 1 <= mat[i][j] <= 100
*
*
*/
// @lc code=start
class Solution {
public:
vector<vector<int>> diagonalSort(vector<vector<int>>& mat) {
unordered_map<int, vector<int>> mymap;
int m = mat.size();
int n = mat[0].size();
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
mymap[i - j].push_back(mat[i][j]);
}
}
for (int i = -n + 1; i < m; ++i) {
sort(mymap[i].begin(), mymap[i].end());
}
for (int i = m - 1; i >= 0; --i) {
for (int j = n - 1; j >= 0; --j) {
mat[i][j] = mymap[i - j].back();
mymap[i - j].pop_back();
}
}
return mat;
}
};
// @lc code=end