-
Notifications
You must be signed in to change notification settings - Fork 0
/
1465.maximum-area-of-a-piece-of-cake-after-horizontal-and-vertical-cuts.cpp
94 lines (89 loc) · 2.91 KB
/
1465.maximum-area-of-a-piece-of-cake-after-horizontal-and-vertical-cuts.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/*
* @lc app=leetcode id=1465 lang=cpp
*
* [1465] Maximum Area of a Piece of Cake After Horizontal and Vertical Cuts
*
* https://leetcode.com/problems/maximum-area-of-a-piece-of-cake-after-horizontal-and-vertical-cuts/description/
*
* algorithms
* Medium (31.63%)
* Likes: 544
* Dislikes: 155
* Total Accepted: 48.2K
* Total Submissions: 133K
* Testcase Example: '5\n4\n[1,2,4]\n[1,3]'
*
* Given a rectangular cake with height h and width w, and two arrays of
* integers horizontalCuts and verticalCuts where horizontalCuts[i] is the
* distance from the top of the rectangular cake to the ith horizontal cut and
* similarly, verticalCuts[j] is the distance from the left of the rectangular
* cake to the jth vertical cut.
*
* Return the maximum area of a piece of cake after you cut at each horizontal
* and vertical position provided in the arrays horizontalCuts and
* verticalCuts. Since the answer can be a huge number, return this modulo 10^9
* + 7.
*
*
* Example 1:
*
*
*
*
* Input: h = 5, w = 4, horizontalCuts = [1,2,4], verticalCuts = [1,3]
* Output: 4
* Explanation: The figure above represents the given rectangular cake. Red
* lines are the horizontal and vertical cuts. After you cut the cake, the
* green piece of cake has the maximum area.
*
*
* Example 2:
*
*
*
*
* Input: h = 5, w = 4, horizontalCuts = [3,1], verticalCuts = [1]
* Output: 6
* Explanation: The figure above represents the given rectangular cake. Red
* lines are the horizontal and vertical cuts. After you cut the cake, the
* green and yellow pieces of cake have the maximum area.
*
*
* Example 3:
*
*
* Input: h = 5, w = 4, horizontalCuts = [3], verticalCuts = [3]
* Output: 9
*
*
*
* Constraints:
*
*
* 2 <= h, w <= 10^9
* 1 <= horizontalCuts.length < min(h, 10^5)
* 1 <= verticalCuts.length < min(w, 10^5)
* 1 <= horizontalCuts[i] < h
* 1 <= verticalCuts[i] < w
* It is guaranteed that all elements in horizontalCuts are distinct.
* It is guaranteed that all elements in verticalCuts are distinct.
*
*
*/
//观察,求每个水平分割线的最大gap,注意把边界也考虑在内,也就是有n + 2个gap
// @lc code=start
class Solution {
public:
int maxArea(int h, int w, vector<int>& horizontalCuts, vector<int>& verticalCuts) {
sort(horizontalCuts.begin(), horizontalCuts.end());
sort(verticalCuts.begin(), verticalCuts.end());
int m = horizontalCuts.size(), n = verticalCuts.size();
int maxW = max(horizontalCuts[0], h - horizontalCuts[m - 1]), maxH = max(verticalCuts[0], w - verticalCuts[n - 1]);
for (int i = 1; i < horizontalCuts.size(); ++i)
maxW = max(maxW, horizontalCuts[i] - horizontalCuts[i - 1]);
for (int i = 1; i < verticalCuts.size(); ++i)
maxH = max(maxH, verticalCuts[i] - verticalCuts[i - 1]);
return (long)maxW * maxH % 1000000007;
}
};
// @lc code=end