-
Notifications
You must be signed in to change notification settings - Fork 0
/
BinaryTreeMaximumPathSum.java
83 lines (73 loc) · 2.03 KB
/
BinaryTreeMaximumPathSum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/*
Given a binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path does not need to go through the root.
For example:
Given the below binary tree,
1
/ \
2 3
Return 6.
*/
import java.io.*;
import java.util.*;
public class BinaryTreeMaximumPathSum {
public static class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
private static int res = Integer.MIN_VALUE;
public static int maxPathSum(TreeNode root) {
if(root == null) return 0;
int sum = maxPath(root);
return sum > res ? sum : res;
}
public static int maxPath(TreeNode root){
if(root == null) return 0;
int l = 0;
int r = 0;
l = Math.max(maxPath(root.left), 0);
r = Math.max(maxPath(root.right), 0);
res = Math.max(l + r+ root.val, res);
return l > r? l + root.val: r + root.val;
}
public static void main(String[] args) {
TreeNode root = new TreeNode(1);
TreeNode node2 = new TreeNode(2);
TreeNode node3 = new TreeNode(3);
TreeNode node4 = new TreeNode(4);
TreeNode node5 = new TreeNode(5);
TreeNode node6 = new TreeNode(6);
TreeNode node7 = new TreeNode(7);
TreeNode node8 = new TreeNode(8);
TreeNode node9 = new TreeNode(9);
TreeNode node10 = new TreeNode(10);
TreeNode node11 = new TreeNode(11);
root.left = node2;
root.right = node3;
node2.left = node4;
node2.right = node5;
node3.left = node6;
node3.right = node7;
node4.left = node8;
node4.right = node9;
node5.left = node10;
node5.right = node11;
node6.left = null;
node6.right = null;
node7.left = null;
node7.right = null;
node8.left = null;
node8.right = null;
node9.left = null;
node9.right = null;
node10.left = null;
node10.right = null;
node11.left = null;
node11.right = null;
int res = maxPathSum(root);
System.out.println("Maximum path sum:" + res);
return;
}
}