-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmpa.hpp
245 lines (245 loc) · 4.84 KB
/
mpa.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#include <vector>
#include <algorithm>
#include <stdexcept>
#ifndef MPA
#define MPA
namespace mpa
{
/**
* Sieve
*/
template<typename large>
std::vector<large> sieve(const large lower, const large upper)
{
std::vector<large> ko;
for(large i=2; i*i<=upper; i++)
for(large j=(lower/i)*i; j<=upper; j+=i)
if(j!=i&&j>=lower)
ko.push_back(j-lower);
std::vector<large> res;
for(large i=0; i<=upper-lower; i++)
if(std::find(ko.begin(), ko.end(), i) == ko.end())
res.push_back(lower+i);
return res;
}
/**
* Modular Exponentiation
*/
template<typename large>
large modexp(const large bas, const large exp, const large mod)
{
if (mod == 1)
return 0;
large b = bas % mod, e = exp, m = mod, r = 1;
while(e > 0)
{
if (e % 2 == 1)
r = (r * b) % m;
e = e / 2;
b = (b * b) % m;
}
return r;
}
/**
* Modular Inverse
*/
template<typename large>
large modinv(const large a, const large m)
{
struct
{
large operator()(large a, large m)
{
large tmp;
if(a < m)
std::swap(a, m);
large x_p = 0;
large x_c = 1;
large r_p = a;
large r_c = m;
while(r_c!=0)
{
tmp = x_c;
x_c = x_p-(r_p/r_c)*x_c;
x_p = tmp;
tmp = r_c;
r_c = r_p%r_c;
r_p = tmp;
}
if(x_p < 0)
x_p += a;
return x_p;
}
} eea;
return eea(a, m);
}
/**
* Power Function
*/
template<typename large>
large pow(const large &bas, const large &exp)
{
if (!(std::is_same<large, large>::value || std::is_integral<large>::value))
{
throw std::runtime_error("rhs is not integral");
}
large res = 1;
large b = bas;
large e = exp;
while(e != 0)
{
if(e%2)
res *= b;
b *= b;
e /= 2;
}
return res;
}
/**
* Square Root Function
*/
template<typename large>
large sqrt(const large &num)
{
large high = num, low = (num+1)/2;
while (low < high)
{
high = low;
low = (low+num/low)/2;
}
return high;
}
/**
* Greatest Common Divisor Function
*/
template<typename large>
large gcd(const large &lhs, const large &rhs)
{
return rhs == 0 ? lhs : gcd(rhs, lhs % rhs);
}
/**
* Least Common Multiple Function
*/
template<typename large>
large lcm(const large &lhs, const large &rhs)
{
return lhs / gcd(lhs, rhs) * rhs;
}
/**
* Maximum Function
*/
template<typename large>
large max(const large &lhs,const large &rhs)
{
if(lhs<rhs)
{
return lhs;
}
return rhs;
}
/**
* Minimum Function
*/
template<typename large>
large min(const large &lhs,const large &rhs)
{
if(lhs>rhs)
{
return rhs;
}
return lhs;
}
/**
* Primality Test
*/
template<typename large>
struct primality
{
large k;
primality(large f): k(f) {}
struct
{
std::vector<large> p = sieve<large>(2, 100);
bool operator()(large num)
{
for (auto v: p)
if(num%v==0)
return false;
return true;
}
} provable;
bool miller_rabin(large n, large d)
{
large a = 2 + large(std::rand()) % (n - 4);
large x = modexp<large>(a, d, n);
if (x == 1 || x == n-1)
return true;
while (d != n-1)
{
x = (x * x) % n;
d *= 2;
if (x == 1)
return false;
if (x == n-1)
return true;
}
return false;
}
bool fermat(large n, large k)
{
if (n == 1)
return false;
for (large i = 0; i < k; i++)
{
large x = large(std::rand()) % (n - 1) + 1;
if (modexp<large>(x, n - 1, n) != 1)
return false;
}
return true;
}
bool operator()(large n)
{
if (n <= 1 || n == 4)
return false;
if (n <= 3)
return true;
if (!provable(n) || !fermat(n, k))
return false;
if (!fermat(n, k))
return false;
large d = n - 1;
while (d % 2 == 0)
d >>= 1;
for (large i = 0; i < k; i++)
if (!miller_rabin(n, d))
return false;
return true;
}
};
/**
* Prime Generation
*/
template<typename large>
large prime(int k, primality<large> check)
{
struct
{
large operator()(int k)
{
large c = large::rand(k);
c += (c%2-1);
return c;
}
} candidate;
large res = candidate(k);
do
{
if(check(res))
break;
res += 2;
}
while(true);
return res;
}
}
#endif