forked from jseabold/538model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsilver_model.py
1424 lines (884 loc) · 34.3 KB
/
silver_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
# <markdowncell>
# GitHub link for the talk. You can clone the data and play with it yourself. Please submit any improvements as pull requests
#
# [https://github.com/jseabold/538model](https://github.com/jseabold/538model)
# <codecell>
import datetime
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
import pandas
from scipy import stats
np.set_printoptions(precision=4, suppress=True)
pandas.set_printoptions(notebook_repr_html=False,
precision=4,
max_columns=12, column_space=10,
max_colwidth=25)
# <codecell>
today = datetime.datetime(2012, 10, 2)
# <headingcell level=2>
# Outline
# <markdowncell>
# Methodology was obtained from the old [538 Blog](http://www.fivethirtyeight.com/2008/03/frequently-asked-questions-last-revised.html) with updates at the [new site hosted by the New York Times](http://fivethirtyeight.blogs.nytimes.com/methodology/)
# <markdowncell>
# 1. Polling Average: Aggregate polling data, and weight it according to our reliability scores.
#
# 2. Trend Adjustment: Adjust the polling data for current trends.
#
# 3. Regression: Analyze demographic data in each state by means of regression analysis.
#
# 4. Snapshot: Combine the polling data with the regression analysis to produce an electoral snapshot. This is our estimate of what would happen if the election were held today.
#
# 5. Projection: Translate the snapshot into a projection of what will happen in November, by allocating out undecided voters and applying a discount to current polling leads based on historical trends.
#
# 6. Simulation: Simulate our results 10,000 times based on the results of the projection to account for the uncertainty in our estimates. The end result is a robust probabilistic assessment of what will happen in each state as well as in the nation as a whole.
# <headingcell level=2>
# Get the Data
# <headingcell level=3>
# Consensus forecast of GDP growth over the next two economic quarters <br />(Median of WSJ's monthly forecasting panel)
# <markdowncell>
# The process for creating an economic index for the 538 model is described [here](http://fivethirtyeight.blogs.nytimes.com/2012/07/05/measuring-the-effect-of-the-economy-on-elections/#more-31732).
# <rawcell>
# Obtained from WSJ.com on 10/2/12
# <codecell>
forecasts = pandas.read_table("/home/skipper/school/seaboldgit/"
"talks/pydata/data/wsj_forecast.csv", skiprows=2)
# <codecell>
forecasts
# <codecell>
forecasts.rename(columns={"Q3 2012" : "gdp_q3_2012",
"Q4 2012" : "gdp_q4_2012"}, inplace=True)
# <codecell>
forecasts
# <rawcell>
# Pandas methods are NaN aware, so we can just get the median.
# <codecell>
median_forecast = forecasts[['gdp_q3_2012', 'gdp_q4_2012']].median()
# <codecell>
median_forecast
# <headingcell level=3>
# Economics State Variables from FRED
# <markdowncell>
# Job Growth (Nonfarm-payrolls) **PAYEMS** <br />
# Personal Income **PI** <br />
# Industrial production **INDPRO** <br />
# Consumption **PCEC96** <br />
# Inflation **CPIAUCSL** <br />
# <codecell>
from pandas.io.data import DataReader
# <codecell>
series = dict(jobs = "PAYEMS",
income = "PI",
prod = "INDPRO",
cons = "PCEC96",
prices = "CPIAUCSL")
# <codecell>
#indicators = []
#for variable in series:
# data = DataReader(series[variable], "fred", start="2010-1-1")
# # renaming not necessary in master
# data.rename(columns={"VALUE" : variable}, inplace=True)
# indicators.append(data)
# <codecell>
#indicators = pandas.concat(indicators, axis=1)
# <codecell>
#indicators
# <headingcell level=3>
# Polling Data
# <markdowncell>
# I used Python to scrape the [Real Clear Politics](realclearpolitics.com) website and download data for the 2004 and 2008 elections. The scraping scripts are available in the github repository for this talk. State by state historical data for the 2004 and 2008 Presidential elections was obtained from [electoral-vote.com](www.electorical-vote.com).
# <headingcell level=2>
# Polling Average
# <markdowncell>
# Details can be found at the 538 blog [here](http://www.fivethirtyeight.com/2008/03/pollster-ratings-updated.html).
# <codecell>
tossup = ["Colorado", "Florida", "Iowa", "New Hampshire", "Nevada",
"Ohio", "Virginia", "Wisconsin"]
# <codecell>
national_data2012 = pandas.read_table("/home/skipper/school/seaboldgit/talks/pydata/"
"data/2012_poll_data.csv")
# <codecell>
national_data2012
# <codecell>
national_data2012.rename(columns={"Poll" : "Pollster"}, inplace=True)
national_data2012["obama_spread"] = national_data2012["Obama (D)"] - national_data2012["Romney (R)"]
# <codecell>
national_data2012["State"] = "USA"
# <codecell>
state_data2012 = pandas.read_table("/home/skipper/school/seaboldgit/talks/pydata/data/2012_poll_data_states.csv")
state_data2012
# <codecell>
state_data2012["obama_spread"] = state_data2012["Obama (D)"] - state_data2012["Romney (R)"]
# <codecell>
state_data2012.rename(columns=dict(Poll="Pollster"), inplace=True);
# <codecell>
state_data2012.MoE
# <codecell>
state_data2012.MoE = state_data2012.MoE.replace("--", "nan").astype(float)
# <codecell>
state_data2012
# <codecell>
state_data2012 = state_data2012.set_index(["Pollster", "State", "Date"]).drop("RCP Average", level=0).reset_index()
# <codecell>
state_data2012.head(5)
# <markdowncell>
# Clean up the sample numbers to make it a number.
# <codecell>
state_data2012.Sample
# <codecell>
state_data2012.Sample = state_data2012.Sample.str.replace("\s*([L|R]V)|A", "") # 20 RV
state_data2012.Sample = state_data2012.Sample.str.replace("\s*--", "nan") # --
state_data2012.Sample = state_data2012.Sample.str.replace("^$", "nan")
national_data2012.Sample = national_data2012.Sample.str.replace("\s*([L|R]V)|A", "") # 20 RV
national_data2012.Sample = national_data2012.Sample.str.replace("\s*--", "nan") # --
national_data2012.Sample = national_data2012.Sample.str.replace("^$", "nan")
# <codecell>
state_data2012.Sample.astype(float)
# <codecell>
state_data2012.Sample = state_data2012.Sample.astype(float)
national_data2012.Sample = national_data2012.Sample.astype(float)
# <markdowncell>
# The 2012 data is currently in order of time by state but doesn't have any years.
# <codecell>
#dates2012.get_group(("OH", "NBC News/Marist"))
# <codecell>
state_data2012["start_date"] = ""
state_data2012["end_date"] = ""
dates2012 = state_data2012.groupby(["State", "Pollster"])["Date"]
for _, date in dates2012:
year = 2012
# checked by hand, none straddle years
changes = np.r_[False, np.diff(map(int, [i[0].split('/')[0] for
i in date.str.split(' - ')])) > 0]
for j, (idx, dt) in enumerate(date.iteritems()):
dt1, dt2 = dt.split(" - ")
year -= changes[j]
# check for ones that haven't polled in a year - soft check
# could be wrong for some...
if year == 2012 and (int(dt1.split("/")[0]) > today.month and
int(dt1.split("/")[1]) > today.day):
year -= 1
dt1 += "/" + str(year)
dt2 += "/" + str(year)
state_data2012.set_value(idx, "start_date", dt1)
state_data2012.set_value(idx, "end_date", dt2)
# <codecell>
national_data2012["start_date"] = ""
national_data2012["end_date"] = ""
dates2012 = national_data2012.groupby(["Pollster"])["Date"]
for _, date in dates2012:
year = 2012
# checked by hand, none straddle years
changes = np.r_[False, np.diff(map(int, [i[0].split('/')[0] for
i in date.str.split(' - ')])) > 0]
for j, (idx, dt) in enumerate(date.iteritems()):
dt1, dt2 = dt.split(" - ")
year -= changes[j]
dt1 += "/" + str(year)
dt2 += "/" + str(year)
national_data2012.set_value(idx, "start_date", dt1)
national_data2012.set_value(idx, "end_date", dt2)
# <codecell>
state_data2012.head(10)
# <codecell>
state_data2012.start_date = state_data2012.start_date.apply(pandas.datetools.parse)
state_data2012.end_date = state_data2012.end_date.apply(pandas.datetools.parse)
national_data2012.start_date = national_data2012.start_date.apply(pandas.datetools.parse)
national_data2012.end_date = national_data2012.end_date.apply(pandas.datetools.parse)
# <codecell>
def median_date(row):
dates = pandas.date_range(row["start_date"], row["end_date"])
median_idx = int(np.median(range(len(dates)))+.5)
return dates[median_idx]
state_data2012["poll_date"] = [median_date(row) for i, row in state_data2012.iterrows()]
del state_data2012["Date"]
del state_data2012["start_date"]
del state_data2012["end_date"]
national_data2012["poll_date"] = [median_date(row) for i, row in national_data2012.iterrows()]
del national_data2012["Date"]
del national_data2012["start_date"]
del national_data2012["end_date"]
# <codecell>
state_data2012.head(5)
# <codecell>
pollsters = state_data2012.Pollster.unique()
pollsters.sort()
# <codecell>
len(pollsters)
# <codecell>
print pandas.Series(pollsters)
# <headingcell level=3>
# 538 Pollster Ratings
# <codecell>
weights = pandas.read_table("/home/skipper/school/seaboldgit/talks/pydata/data/pollster_weights.csv")
# <codecell>
weights
# <codecell>
weights.mean()
# <markdowncell>
# Clean up the pollster names a bit so we can merge with the weights.
# <codecell>
import pickle
pollster_map = pickle.load(open("/home/skipper/school/seaboldgit/talks/pydata/data/pollster_map.pkl", "rb"))
# <codecell>
state_data2012.Pollster.replace(pollster_map, inplace=True);
# <codecell>
national_data2012.Pollster.replace(pollster_map, inplace=True);
# <markdowncell>
# Inner merge the data with the weights
# <codecell>
state_data2012 = state_data2012.merge(weights, how="inner", on="Pollster")
# <codecell>
state_data2012.head(5)
# <headingcell level=4>
# First, we average each pollster for each state.
# <markdowncell>
# The first adjustment is an exponential decay for recency of the poll. Based on research in prior elections, a weight with a half-life of 30 days since the median date the poll has been in the field is assigned to each poll.
# <codecell>
def exp_decay(days):
# defensive coding, accepts timedeltas
days = getattr(days, "days", days)
return .5 ** (days/30.)
# <codecell>
fig, ax = plt.subplots(figsize=(12,8), subplot_kw={"xlabel" : "Days",
"ylabel" : "Weight"})
days = np.arange(0, 45)
ax.plot(days, exp_decay(days));
ax.vlines(30, 0, .99, color='r', linewidth=4)
ax.set_ylim(0,1)
ax.set_xlim(0, 45);
# <markdowncell>
# The second adjustment is for the sample size of the poll. Polls with a higher sample size receive a higher weight.
# <markdowncell>
# Binomial sampling error = +/- $50 * \frac{1}{\sqrt{nobs}}$ where the 50 depends on the underlying probability or population preferences, in this case assumed to be 50:50 (another way of calculating Margin of Error)
# <codecell>
def average_error(nobs, p=50.):
return p*nobs**-.5
# <markdowncell>
# The thinking here is that having 5 polls of 1200 is a lot like having one poll of 6000. However, we downweight older polls by only including the marginal effective sample size. Where the effective sample size is the size of the methodologically perfect poll for which we would be indifferent between it and the one we have with our current total error. Total error is determined as $TE = \text{Average Error} + \text{Long Run Pollster Induced Error}$. See [here](http://www.fivethirtyeight.com/2008/04/pollster-ratings-v30.html) for the detailed calculations of Pollster Induced Error.
# <codecell>
def effective_sample(total_error, p=50.):
return p**2 * (total_error**-2.)
# <codecell>
state_pollsters = state_data2012.groupby(["State", "Pollster"])
# <codecell>
ppp_az = state_pollsters.get_group(("AZ", "Public Policy Polling (PPP)"))
# <codecell>
var_idx = ["Pollster", "State", "Obama (D)", "Romney (R)", "Sample", "poll_date"]
ppp_az[var_idx]
# <codecell>
ppp_az.sort("poll_date", ascending=False, inplace=True);
# <codecell>
ppp_az["cumulative"] = ppp_az["Sample"].cumsum()
ppp_az["average_error"] = average_error(ppp_az["cumulative"])
ppp_az["total_error"] = ppp_az["PIE"] + ppp_az["average_error"]
ppp_az[var_idx + ["cumulative"]]
# <codecell>
ppp_az["ESS"] = effective_sample(ppp_az["total_error"])
ppp_az["MESS"] = ppp_az["ESS"].diff()
# fill in first one
ppp_az["MESS"].fillna(ppp_az["ESS"].head(1).item(), inplace=True);
# <codecell>
ppp_az[["poll_date", "Sample", "cumulative", "ESS", "MESS"]]
# <markdowncell>
# Now let's do it for every polling firm in every state.
# <codecell>
def calculate_mess(group):
cumulative = group["Sample"].cumsum()
ae = average_error(cumulative)
total_error = ae + group["PIE"]
ess = effective_sample(total_error)
mess = ess.diff()
mess.fillna(ess.head(1).item(), inplace=True)
#from IPython.core.debugger import Pdb; Pdb().set_trace()
return pandas.concat((ess, mess), axis=1)
#state_data2012["ESS", "MESS"]
df = state_pollsters.apply(calculate_mess)
df.rename(columns={0 : "ESS", 1 : "MESS"}, inplace=True);
# <codecell>
state_data2012 = state_data2012.join(df)
# <markdowncell>
# Give them the time weight
# <codecell>
td = today - state_data2012["poll_date"].head(1).item()
# <codecell>
state_data2012["poll_date"].head(1).item()
# <codecell>
td
# <codecell>
state_data2012["time_weight"] = (today - state_data2012["poll_date"]).apply(exp_decay)
# <markdowncell>
# Now aggregate all of these. Weight them based on the sample size but also based on the time_weight.
# <codecell>
def weighted_mean(group):
weights1 = group["time_weight"]
weights2 = group["MESS"]
return np.sum(weights1*weights2*group["obama_spread"]/(weights1*weights2).sum())
# <codecell>
state_pollsters = state_data2012.groupby(["State", "Pollster"])
state_polls = state_pollsters.apply(weighted_mean)
# <codecell>
state_polls
# <headingcell level=3>
# 2004 and 2008 Polls
# <codecell>
state_data2004 = pandas.read_csv("/home/skipper/school/seaboldgit/talks/pydata/data/2004-pres-polls.csv")
state_data2004
# <codecell>
state_data2004.head(5)
# <codecell>
state_data2008 = pandas.read_csv("/home/skipper/school/seaboldgit/talks/pydata/data/2008-pres-polls.csv")
state_data2008
# <codecell>
state_data2008.head(5)
# <codecell>
state_data2008.End + " 2008"
# <codecell>
(state_data2008.End + " 2008").apply(pandas.datetools.parse)
# <markdowncell>
# Need to clean some of the dates in this data. Luckily, pandas makes this easy to do.
# <codecell>
state_data2004.Date = state_data2004.Date.str.replace("Nov 00", "Nov 01")
state_data2004.Date = state_data2004.Date.str.replace("Oct 00", "Oct 01")
# <codecell>
state_data2008["poll_date"] = (state_data2008.End + " 2008").apply(pandas.datetools.parse)
state_data2004["poll_date"] = (state_data2004.Date + " 2004").apply(pandas.datetools.parse)
# <codecell>
del state_data2008["End"]
del state_data2008["Start"]
del state_data2004["Date"]
# <codecell>
state_data2008
# <codecell>
state_data2004
# <codecell>
state_groups = state_data2008.groupby("State")
# <codecell>
state_groups.aggregate(dict(Obama=np.mean, McCain=np.mean))
# <markdowncell>
# Means for the entire country (without weighting by population)
# <codecell>
state_groups.aggregate(dict(Obama=np.mean, McCain=np.mean)).mean()
# <codecell>
state_data2004.Pollster.replace(pollster_map, inplace=True)
state_data2008.Pollster.replace(pollster_map, inplace=True);
# <codecell>
state_data2004 = state_data2004.merge(weights, how="inner", on="Pollster")
state_data2008 = state_data2008.merge(weights, how="inner", on="Pollster")
# <codecell>
len(state_data2004.Pollster.unique())
# <codecell>
len(state_data2008.Pollster.unique())
# <codecell>
import datetime
# <codecell>
date2004 = datetime.datetime(2004, 11, 2)
date2004
# <codecell>
(date2004 - state_data2004.poll_date) < datetime.timedelta(21)
# <markdowncell>
# Restrict the samples to the 3 weeks leading up to the election
# <codecell>
state_data2004 = state_data2004.ix[(date2004 - state_data2004.poll_date) <= datetime.timedelta(21)]
state_data2004.reset_index(drop=True, inplace=True)
# <codecell>
date2008 = datetime.datetime(2008, 11, 4)
# <codecell>
state_data2008 = state_data2008.ix[(date2008 - state_data2008.poll_date) <= datetime.timedelta(21)]
state_data2008.reset_index(drop=True, inplace=True)
# <codecell>
state_data2008
# <codecell>
state_data2004["time_weight"] =(date2004 - state_data2004.poll_date).apply(exp_decay)
state_data2008["time_weight"] =(date2008 - state_data2008.poll_date).apply(exp_decay)
# <codecell>
state_data2004[["time_weight", "poll_date"]].head(5)
# <codecell>
def max_date(x):
return x == x.max()
# <codecell>
state_data2004["newest_poll"] = state_data2004.groupby(("State", "Pollster")).poll_date.transform(max_date)
state_data2008["newest_poll"] = state_data2008.groupby(("State", "Pollster")).poll_date.transform(max_date)
# <headingcell level=3>
# Clustering States by Demographics
# <markdowncell>
# There are notes on trend line adjustment, [here](http://www.fivethirtyeight.com/2008/06/we-know-more-than-we-think-big-change-2.html), [here](http://www.fivethirtyeight.com/2008/06/refinement-to-adjustment-part-i.html), [here](http://www.fivethirtyeight.com/2008/06/refinement-to-adjustment-part-ii.html), [here](http://www.fivethirtyeight.com/2008/06/trendline-now-calculated-from-daily.html), and [here](http://www.fivethirtyeight.com/2008/06/construction-season-over-technical.html). However, to the best of my knowledge, the similar state "nearest neighbor" clustering remains a black box.
# <markdowncell>
# Partican Voting Index data obtained from [Wikipedia](http://en.wikipedia.org/wiki/Cook_Partisan_Voting_Index)
# <codecell>
pvi = pandas.read_csv("/home/skipper/school/seaboldgit/talks/pydata/data/partisan_voting.csv")
# <codecell>
pvi.set_index("State", inplace=True);
pvi
# <codecell>
pvi.PVI = pvi.PVI.replace({"EVEN" : "0"})
pvi.PVI = pvi.PVI.str.replace("R\+", "-")
pvi.PVI = pvi.PVI.str.replace("D\+", "")
pvi.PVI = pvi.PVI.astype(float)
pvi.PVI
# <markdowncell>
# Party affliation of electorate obtained from [Gallup](http://www.gallup.com/poll/156437/Heavily-Democratic-States-Concentrated-East.aspx#2).
# <codecell>
party_affil = pandas.read_csv("/home/skipper/school/seaboldgit/talks/pydata/data/gallup_electorate.csv")
# <codecell>
party_affil.Democrat = party_affil.Democrat.str.replace("%", "").astype(float)
party_affil.Republican = party_affil.Republican.str.replace("%", "").astype(float)
party_affil.set_index("State", inplace=True);
party_affil.rename(columns={"Democrat Advantage" : "dem_adv"}, inplace=True);
party_affil["no_party"] = 100 - party_affil.Democrat - party_affil.Republican
# <codecell>
party_affil
# <codecell>
census_data = pandas.read_csv("/home/skipper/school/seaboldgit/talks/pydata/data/census_demographics.csv")
# <codecell>
def capitalize(s):
s = s.title()
s = s.replace("Of", "of")
return s
# <codecell>
census_data["State"] = census_data.state.map(capitalize)
del census_data["state"]
# <codecell>
census_data.set_index("State", inplace=True)
# <codecell>
#loadpy https://raw.github.com/gist/3912533/d958b515f602f6e73f7b16d8bc412bc8d1f433d9/state_abbrevs.py;
# <codecell>
states_abbrev_dict = {
'AK': 'Alaska',
'AL': 'Alabama',
'AR': 'Arkansas',
'AS': 'American Samoa',
'AZ': 'Arizona',
'CA': 'California',
'CO': 'Colorado',
'CT': 'Connecticut',
'DC': 'District of Columbia',
'DE': 'Delaware',
'FL': 'Florida',
'GA': 'Georgia',
'GU': 'Guam',
'HI': 'Hawaii',
'IA': 'Iowa',
'ID': 'Idaho',
'IL': 'Illinois',
'IN': 'Indiana',
'KS': 'Kansas',
'KY': 'Kentucky',
'LA': 'Louisiana',
'MA': 'Massachusetts',
'MD': 'Maryland',
'ME': 'Maine',
'MI': 'Michigan',
'MN': 'Minnesota',
'MO': 'Missouri',
'MP': 'Northern Mariana Islands',
'MS': 'Mississippi',
'MT': 'Montana',
'NA': 'National',
'NC': 'North Carolina',
'ND': 'North Dakota',
'NE': 'Nebraska',
'NH': 'New Hampshire',
'NJ': 'New Jersey',
'NM': 'New Mexico',
'NV': 'Nevada',
'NY': 'New York',
'OH': 'Ohio',
'OK': 'Oklahoma',
'OR': 'Oregon',
'PA': 'Pennsylvania',
'PR': 'Puerto Rico',
'RI': 'Rhode Island',
'SC': 'South Carolina',
'SD': 'South Dakota',
'TN': 'Tennessee',
'TX': 'Texas',
'UT': 'Utah',
'VA': 'Virginia',
'VI': 'Virgin Islands',
'VT': 'Vermont',
'WA': 'Washington',
'WI': 'Wisconsin',
'WV': 'West Virginia',
'WY': 'Wyoming'
}
# <markdowncell>
# Campaign Contributions from FEC.
# <codecell>
obama_give = pandas.read_csv("/home/skipper/school/seaboldgit/talks/pydata/data/obama_indiv_state.csv",
header=None, names=["State", "obama_give"])
romney_give = pandas.read_csv("/home/skipper/school/seaboldgit/talks/pydata/data/romney_indiv_state.csv",
header=None, names=["State", "romney_give"])
# <codecell>
obama_give.State.replace(states_abbrev_dict, inplace=True);
romney_give.State.replace(states_abbrev_dict, inplace=True);
# <codecell>
obama_give.set_index("State", inplace=True)
romney_give.set_index("State", inplace=True);
# <codecell>
demo_data = census_data.join(party_affil[["dem_adv", "no_party"]]).join(pvi)
# <codecell>
demo_data = demo_data.join(obama_give).join(romney_give)
# <codecell>
giving = demo_data[["obama_give", "romney_give"]].div(demo_data[["vote_pop", "older_pop"]].sum(1), axis=0)
giving
# <codecell>
demo_data[["obama_give", "romney_give"]] = giving
# <codecell>
from scipy import cluster as sp_cluster
from sklearn import cluster, neighbors
# <codecell>
clean_data = sp_cluster.vq.whiten(demo_data.values)
# <codecell>
clean_data.var(axis=0)
# <codecell>
KNN = neighbors.NearestNeighbors(n_neighbors=7)
KNN.fit(clean_data)
KNN.kneighbors(clean_data[0], return_distance=True)
# <codecell>
idx = _[1]
demo_data.index[0], demo_data.index[idx]
# <codecell>
nearest_neighbor = {}
for i, state in enumerate(demo_data.index):
neighborhood = KNN.kneighbors(clean_data[i], return_distance=True)
nearest_neighbor.update({state : (demo_data.index[neighborhood[1]],
neighborhood[0])})
# <codecell>
nearest_neighbor
# <codecell>
k_means = cluster.KMeans(n_clusters=5, n_init=50)
k_means.fit(clean_data)
values = k_means.cluster_centers_.squeeze()
labels = k_means.labels_
# <codecell>
clusters = sp_cluster.vq.kmeans(clean_data, 5)[0]
# <codecell>
def choose_group(data, clusters):
"""
Return the index of the cluster to which the rows in data
are "closest" (in the sense of the L2-norm)
"""
data = data[:,None] # add an axis for broadcasting
distances = data - clusters
groups = []
for row in distances:
dists = map(np.linalg.norm, row)
groups.append(np.argmin(dists))
return groups
# <codecell>
groups = choose_group(clean_data, clusters)
# <codecell>
np.array(groups)
# <markdowncell>
# Or use a one-liner
# <codecell>
groups = [np.argmin(map(np.linalg.norm, (clean_data[:,None] - clusters)[i])) for i in range(51)]
# <codecell>
demo_data["kmeans_group"] = groups
demo_data["kmeans_labels"] = labels
# <codecell>
for _, group in demo_data.groupby("kmeans_group"):
group = group.index
group.values.sort()
print group.values
# <codecell>
labels
# <codecell>
demo_data["kmeans_labels"] = labels
for _, group in demo_data.groupby("kmeans_labels"):
group = group.index.copy()
group.values.sort()
print group.values
# <codecell>
demo_data = demo_data.reset_index()
# <codecell>
state_data2012.State.replace(states_abbrev_dict, inplace=True);
# <codecell>
state_data2012 = state_data2012.merge(demo_data[["State", "kmeans_labels"]], on="State")
# <codecell>
kmeans_groups = state_data2012.groupby("kmeans_labels")
# <codecell>
group = kmeans_groups.get_group(kmeans_groups.groups.keys()[2])
# <codecell>
group.State.unique()
# <codecell>
def edit_tick_label(tick_val, tick_pos):
if tick_val < 0:
text = str(int(tick_val)).replace("-", "Romney+")
else:
text = "Obama+"+str(int(tick_val))
return text
# <codecell>
from pandas import lib
from matplotlib.ticker import FuncFormatter
fig, axes = plt.subplots(figsize=(12,8))
data = group[["poll_date", "obama_spread"]]
data = pandas.concat((data, national_data2012[["poll_date", "obama_spread"]]))
data.sort("poll_date", inplace=True)
dates = pandas.DatetimeIndex(data.poll_date).asi8
loess_res = sm.nonparametric.lowess(data.obama_spread.values, dates,
frac=.2, it=3)
dates_x = lib.ints_to_pydatetime(dates)
axes.scatter(dates_x, data["obama_spread"])
axes.plot(dates_x, loess_res[:,1], color='r')
axes.yaxis.get_major_locator().set_params(nbins=12)
axes.yaxis.set_major_formatter(FuncFormatter(edit_tick_label))
axes.grid(False, axis='x')
axes.hlines(0, dates_x[0], dates_x[-1], color='black', lw=3)
axes.margins(0, .05)