forked from hahnyuan/nn_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_to_caffe.py
437 lines (399 loc) · 16.3 KB
/
pytorch_to_caffe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import torch
import torch.nn as nn
from Caffe import caffe_net
import torch.nn.functional as F
from torch.autograd import Variable
from Caffe import layer_param
from torch.nn.modules.utils import _pair
import numpy as np
"""
How to support a new layer type:
layer_name=log.add_layer(layer_type_name)
top_blobs=log.add_blobs(<output of that layer>)
layer=caffe_net.Layer_param(xxx)
<set layer parameters>
[<layer.add_data(*datas)>]
log.cnet.add_layer(layer)
"""
# TODO: support the inplace output of the layers
NET_INITTED=False
class TransLog(object):
def __init__(self):
"""
doing init() with inputs Variable before using it
"""
self.layers={}
self._blobs={}
self._blobs_data=[]
self.cnet=caffe_net.Caffemodel('')
self.debug=False
def init(self,inputs):
"""
:param inputs: is a list of input variables
"""
self.add_blobs(inputs)
def add_layer(self,name='layer'):
if name in self.layers:
return self.layers[name]
name='{}{}'.format(name,len(self.layers))
self.layers[name]=name
if self.debug:
print("{} was added to layers".format(self.layers[name]))
return self.layers[name]
def add_blobs(self, blobs,name='blob',with_num=True):
rst=[]
for blob in blobs:
self._blobs_data.append(blob) # to block the memory address be rewrited
blob=int(id(blob))
if with_num:
rst.append('{}{}'.format(name,len(self._blobs)))
else:
rst.append('{}'.format(name))
if self.debug:
print("{}:{} was added to blobs".format(blob,rst[-1]))
self._blobs[blob]=rst[-1]
return rst
def blobs(self, var):
var=id(var)
if self.debug:
print("{}:{} getting".format(var, self._blobs[var]))
try:
return self._blobs[var]
except:
print("WARNING: CANNOT FOUND blob {}".format(var))
return None
log=TransLog()
def _conv2d(raw,input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
x=raw(input,weight,bias,stride,padding,dilation,groups)
name=log.add_layer(name='conv')
log.add_blobs([x],name='conv_blob')
layer=caffe_net.Layer_param(name=name, type='Convolution',
bottom=[log.blobs(input)], top=[log.blobs(x)])
layer.conv_param(x.size()[1],weight.size()[2:],stride=_pair(stride),
pad=_pair(padding),dilation=_pair(dilation),bias_term=bias is not None)
if bias is not None:
layer.add_data(weight.cpu().data.numpy(),bias.cpu().data.numpy())
else:
layer.param.convolution_param.bias_term=False
layer.add_data(weight.cpu().data.numpy())
log.cnet.add_layer(layer)
return x
def _linear(raw,input, weight, bias=None):
x=raw(input,weight,bias)
layer_name=log.add_layer(name='fc')
top_blobs=log.add_blobs([x],name='fc_blob')
layer=caffe_net.Layer_param(name=layer_name,type='InnerProduct',
bottom=[log.blobs(input)],top=top_blobs)
layer.fc_param(x.size()[1])
if bias is not None:
layer.add_data(weight.cpu().data.numpy(),bias.cpu().data.numpy())
else:
layer.add_data(weight.cpu().data.numpy())
log.cnet.add_layer(layer)
return x
def _split(raw,tensor, split_size, dim=0):
# split in pytorch is slice in caffe
x=raw(tensor, split_size, dim)
layer_name=log.add_layer('split')
top_blobs=log.add_blobs(x,name='split_blob')
layer=caffe_net.Layer_param(name=layer_name, type='Slice',
bottom=[log.blobs(tensor)], top=top_blobs)
slice_num=int(np.floor(tensor.size()[dim]/split_size))
slice_param=caffe_net.pb.SliceParameter(axis=dim,slice_point=[split_size*i for i in range(1,slice_num)])
layer.param.slice_param.CopyFrom(slice_param)
log.cnet.add_layer(layer)
return x
def _pool(type,raw,input,x,kernel_size,stride,padding,ceil_mode):
# TODO dilation,ceil_mode,return indices
layer_name = log.add_layer(name='{}_pool'.format(type))
top_blobs = log.add_blobs([x], name='{}_pool_blob'.format(type))
layer = caffe_net.Layer_param(name=layer_name, type='Pooling',
bottom=[log.blobs(input)], top=top_blobs)
# TODO w,h different kernel, stride and padding
# processing ceil mode
layer.pool_param(kernel_size=kernel_size, stride=kernel_size if stride is None else stride,
pad=padding, type=type.upper())
log.cnet.add_layer(layer)
if ceil_mode==False and stride is not None:
oheight = (input.size()[2] - _pair(kernel_size)[0] + 2 * _pair(padding)[0]) % (_pair(stride)[0])
owidth = (input.size()[3] - _pair(kernel_size)[1] + 2 * _pair(padding)[1]) % (_pair(stride)[1])
if oheight!=0 or owidth!=0:
caffe_out=raw(input, kernel_size, stride, padding, ceil_mode=True)
print("WARNING: the output shape miss match at {}: "
"input {} output---Pytorch:{}---Caffe:{}\n"
"This is caused by the different implementation that ceil mode in caffe and the floor mode in pytorch.\n"
"You can add the clip layer in caffe prototxt manually if shape mismatch error is caused in caffe. ".format(layer_name,input.size(),x.size(),caffe_out.size()))
def _max_pool2d(raw,input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
x = raw(input, kernel_size, stride, padding, dilation,ceil_mode, return_indices)
_pool('max',raw,input, x, kernel_size, stride, padding,ceil_mode)
return x
def _avg_pool2d(raw,input, kernel_size, stride = None, padding = 0, ceil_mode = False, count_include_pad = True):
x = raw(input, kernel_size, stride, padding, ceil_mode, count_include_pad)
_pool('ave',raw,input, x, kernel_size, stride, padding,ceil_mode)
return x
def _max(raw,*args):
x=raw(*args)
if len(args)==1:
# TODO max in one tensor
assert NotImplementedError
else:
bottom_blobs=[]
for arg in args:
bottom_blobs.append(log.blobs(arg))
layer_name=log.add_layer(name='max')
top_blobs=log.add_blobs([x],name='max_blob')
layer=caffe_net.Layer_param(name=layer_name,type='Eltwise',
bottom=bottom_blobs,top=top_blobs)
layer.param.eltwise_param.operation =2
log.cnet.add_layer(layer)
return x
def _cat(raw,inputs, dimension=0):
x=raw(inputs, dimension)
bottom_blobs=[]
for input in inputs:
bottom_blobs.append(log.blobs(input))
layer_name=log.add_layer(name='cat')
top_blobs=log.add_blobs([x],name='cat_blob')
layer=caffe_net.Layer_param(name=layer_name,type='Concat',
bottom=bottom_blobs,top=top_blobs)
layer.param.concat_param.axis =dimension
log.cnet.add_layer(layer)
return x
def _dropout(raw,input,p=0.5, training=False, inplace=False):
x=raw(input,p, training, inplace)
bottom_blobs=[log.blobs(input)]
layer_name=log.add_layer(name='dropout')
top_blobs=log.add_blobs([x],name=bottom_blobs[0],with_num=False)
layer=caffe_net.Layer_param(name=layer_name,type='Dropout',
bottom=bottom_blobs,top=top_blobs)
layer.param.dropout_param.dropout_ratio = p
layer.param.include.extend([caffe_net.pb.NetStateRule(phase=0)]) # 1 for test, 0 for train
log.cnet.add_layer(layer)
return x
def _threshold(raw,input, threshold, value, inplace=False):
# for threshold or relu
if threshold==0 and value==0:
x = raw(input,threshold, value, inplace)
name = log.add_layer(name='relu')
log.add_blobs([x], name='relu_blob')
layer = caffe_net.Layer_param(name=name, type='ReLU',
bottom=[log.blobs(input)], top=[log.blobs(x)])
log.cnet.add_layer(layer)
return x
if value!=0:
raise NotImplemented("value !=0 not implemented in caffe")
x=raw(input,input, threshold, value, inplace)
bottom_blobs=[log.blobs(input)]
layer_name=log.add_layer(name='threshold')
top_blobs=log.add_blobs([x],name='threshold_blob')
layer=caffe_net.Layer_param(name=layer_name,type='Threshold',
bottom=bottom_blobs,top=top_blobs)
layer.param.threshold_param.threshold = threshold
log.cnet.add_layer(layer)
return x
def _prelu(raw, input, weight):
# for threshold or prelu
x = raw(input, weight)
name = log.add_layer(name='prelu')
log.add_blobs([x], name='prelu_blob')
layer = caffe_net.Layer_param(name=name, type='PReLU',
bottom=[log.blobs(input)], top=[log.blobs(x)])
if weight.size()[0]==1:
layer.param.prelu_param.channel_shared=True
layer.add_data(weight.cpu().data.numpy()[0])
else:
layer.add_data(weight.cpu().data.numpy())
log.cnet.add_layer(layer)
return x
def _softmax(raw, input, dim=None, _stacklevel=3):
# for F.softmax
x=raw(input, dim=dim)
if dim is None:
dim=F._get_softmax_dim('softmax', input.dim(), _stacklevel)
name = log.add_layer(name='softmax')
log.add_blobs([x], name='softmax_blob')
layer = caffe_net.Layer_param(name=name, type='Softmax',
bottom=[log.blobs(input)], top=[log.blobs(x)])
layer.param.softmax_param.axis=dim
log.cnet.add_layer(layer)
return x
def _batch_norm(raw,input, running_mean, running_var, weight=None, bias=None,
training=False, momentum=0.1, eps=1e-5):
# because the runing_mean and runing_var will be changed after the _batch_norm operation, we first save the parameters
running_mean_clone=running_mean.clone()
running_var_clone=running_var.clone()
x = raw(input, running_mean, running_var, weight, bias,
training, momentum, eps)
bottom_blobs = [log.blobs(input)]
layer_name1 = log.add_layer(name='batch_norm')
top_blobs = log.add_blobs([x], name='batch_norm_blob')
layer1 = caffe_net.Layer_param(name=layer_name1, type='BatchNorm',
bottom=bottom_blobs, top=top_blobs)
layer1.batch_norm_param(1, eps=eps)
layer1.add_data(running_mean_clone.cpu().numpy(), running_var_clone.cpu().numpy(), np.array([1.0]))
log.cnet.add_layer(layer1)
layer_name2 = log.add_layer(name='bn_scale')
layer2 = caffe_net.Layer_param(name=layer_name2, type='Scale',
bottom=top_blobs, top=top_blobs)
layer2.param.scale_param.bias_term = True
layer2.add_data(weight.cpu().data.numpy(), bias.cpu().data.numpy())
log.cnet.add_layer(layer2)
return x
# ----- for Variable operations --------
def _view(input, *args):
x=raw_view(input, *args)
if not NET_INITTED:
return x
layer_name=log.add_layer(name='view')
top_blobs=log.add_blobs([x],name='view_blob')
layer=caffe_net.Layer_param(name=layer_name,type='Reshape',
bottom=[log.blobs(input)],top=top_blobs)
# TODO: reshpae added to nn_tools layer
dims=list(args)
dims[0]=0 # the first dim should be batch_size
layer.param.reshape_param.shape.CopyFrom(caffe_net.pb.BlobShape(dim=dims))
log.cnet.add_layer(layer)
return x
def _add(input, *args):
x = raw__add__(input, *args)
if not NET_INITTED:
return x
layer_name = log.add_layer(name='add')
top_blobs = log.add_blobs([x], name='add_blob')
layer = caffe_net.Layer_param(name=layer_name, type='Eltwise',
bottom=[log.blobs(input),log.blobs(args[0])], top=top_blobs)
layer.param.eltwise_param.operation = 1 # sum is 1
log.cnet.add_layer(layer)
return x
def _iadd(input, *args):
x = raw__iadd__(input, *args)
if not NET_INITTED:
return x
x=x.clone()
layer_name = log.add_layer(name='add')
top_blobs = log.add_blobs([x], name='add_blob')
layer = caffe_net.Layer_param(name=layer_name, type='Eltwise',
bottom=[log.blobs(input),log.blobs(args[0])], top=top_blobs)
layer.param.eltwise_param.operation = 1 # sum is 1
log.cnet.add_layer(layer)
return x
def _sub(input, *args):
x = raw__sub__(input, *args)
if not NET_INITTED:
return x
layer_name = log.add_layer(name='sub')
top_blobs = log.add_blobs([x], name='sub_blob')
layer = caffe_net.Layer_param(name=layer_name, type='Eltwise',
bottom=[log.blobs(input),log.blobs(args[0])], top=top_blobs)
layer.param.eltwise_param.operation = 1 # sum is 1
layer.param.eltwise_param.coeff.extend([1.,-1.])
log.cnet.add_layer(layer)
return x
def _isub(input, *args):
x = raw__isub__(input, *args)
if not NET_INITTED:
return x
x=x.clone()
layer_name = log.add_layer(name='sub')
top_blobs = log.add_blobs([x], name='sub_blob')
layer = caffe_net.Layer_param(name=layer_name, type='Eltwise',
bottom=[log.blobs(input),log.blobs(args[0])], top=top_blobs)
layer.param.eltwise_param.operation = 1 # sum is 1
log.cnet.add_layer(layer)
return x
def _mul(input, *args):
x = raw__sub__(input, *args)
if not NET_INITTED:
return x
layer_name = log.add_layer(name='mul')
top_blobs = log.add_blobs([x], name='mul_blob')
layer = caffe_net.Layer_param(name=layer_name, type='Eltwise',
bottom=[log.blobs(input), log.blobs(args[0])], top=top_blobs)
layer.param.eltwise_param.operation = 0 # product is 1
log.cnet.add_layer(layer)
return x
def _imul(input, *args):
x = raw__isub__(input, *args)
if not NET_INITTED:
return x
x = x.clone()
layer_name = log.add_layer(name='mul')
top_blobs = log.add_blobs([x], name='mul_blob')
layer = caffe_net.Layer_param(name=layer_name, type='Eltwise',
bottom=[log.blobs(input), log.blobs(args[0])], top=top_blobs)
layer.param.eltwise_param.operation = 0 # product is 1
layer.param.eltwise_param.coeff.extend([1., -1.])
log.cnet.add_layer(layer)
return x
class Rp(object):
def __init__(self,raw,replace,**kwargs):
# replace the raw function to replace function
self.obj=replace
self.raw=raw
def __call__(self,*args,**kwargs):
if not NET_INITTED:
return self.raw(*args,**kwargs)
out=self.obj(self.raw,*args,**kwargs)
# if isinstance(out,Variable):
# out=[out]
return out
F.conv2d=Rp(F.conv2d,_conv2d)
F.linear=Rp(F.linear,_linear)
F.max_pool2d=Rp(F.max_pool2d,_max_pool2d)
F.avg_pool2d=Rp(F.avg_pool2d,_avg_pool2d)
F.dropout=Rp(F.dropout,_dropout)
F.threshold=Rp(F.threshold,_threshold)
F.prelu=Rp(F.prelu,_prelu)
F.batch_norm=Rp(F.batch_norm,_batch_norm)
F.softmax=Rp(F.softmax,_softmax)
torch.split=Rp(torch.split,_split)
torch.max=Rp(torch.max,_max)
torch.cat=Rp(torch.cat,_cat)
# TODO: other types of the view function
try:
raw_view=Variable.view
Variable.view=_view
raw__add__=Variable.__add__
Variable.__add__=_add
raw__iadd__=Variable.__iadd__
Variable.__iadd__=_iadd
raw__sub__=Variable.__sub__
Variable.__sub__=_sub
raw__isub__=Variable.__isub__
Variable.__isub__=_isub
raw__mul__ = Variable.__mul__
Variable.__mul__ = _mul
raw__imul__ = Variable.__imul__
Variable.__imul__ = _imul
except:
# for new version 0.4.0
for t in [torch.Tensor]:
raw_view = t.view
t.view = _view
raw__add__ = t.__add__
t.__add__ = _add
raw__iadd__ = t.__iadd__
t.__iadd__ = _iadd
raw__sub__ = t.__sub__
t.__sub__ = _sub
raw__isub__ = t.__isub__
t.__isub__ = _isub
raw__mul__ = t.__mul__
t.__mul__=_mul
raw__imul__ = t.__imul__
t.__imul__ = _imul
def trans_net(net,input_var,name='NoNamePytorchModel'):
print('Starting Transform, This will take a while')
log.init([input_var])
log.cnet.net.name=name
log.cnet.net.input.extend([log.blobs(input_var)])
log.cnet.net.input_dim.extend(input_var.size())
global NET_INITTED
NET_INITTED=True
out = net.forward(input_var)
print('Transform Completed')
def save_prototxt(save_name):
log.cnet.save_prototxt(save_name)
def save_caffemodel(save_name):
log.cnet.save(save_name)