forked from thompsonb/vecalign
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscore.py
executable file
·170 lines (131 loc) · 5.83 KB
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python3
"""
Copyright 2019 Brian Thompson
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import argparse
import sys
from collections import defaultdict
import numpy as np
from dp_utils import read_alignments
"""
Faster implementation of lax and strict precision and recall, based on
https://www.aclweb.org/anthology/W11-4624/.
"""
def _precision(goldalign, testalign):
"""
Computes tpstrict, fpstrict, tplax, fplax for gold/test alignments
"""
tpstrict = 0 # true positive strict counter
tplax = 0 # true positive lax counter
fpstrict = 0 # false positive strict counter
fplax = 0 # false positive lax counter
# convert to sets, remove alignments empty on both sides
testalign = set([(tuple(x), tuple(y)) for x, y in testalign if len(x) or len(y)])
goldalign = set([(tuple(x), tuple(y)) for x, y in goldalign if len(x) or len(y)])
# mappings from source test sentence idxs to
# target gold sentence idxs for which the source test sentence
# was found in corresponding source gold alignment
src_id_to_gold_tgt_ids = defaultdict(set)
for gold_src, gold_tgt in goldalign:
for gold_src_id in gold_src:
for gold_tgt_id in gold_tgt:
src_id_to_gold_tgt_ids[gold_src_id].add(gold_tgt_id)
for (test_src, test_target) in testalign:
if (test_src, test_target) == ((), ()):
continue
if (test_src, test_target) in goldalign:
# strict match
tpstrict += 1
tplax += 1
else:
# For anything with partial gold/test overlap on the source,
# see if there is also partial overlap on the gold/test target
# If so, its a lax match
target_ids = set()
for src_test_id in test_src:
for tgt_id in src_id_to_gold_tgt_ids[src_test_id]:
target_ids.add(tgt_id)
if set(test_target).intersection(target_ids):
fpstrict += 1
tplax += 1
else:
fpstrict += 1
fplax += 1
return np.array([tpstrict, fpstrict, tplax, fplax], dtype=np.int32)
def score_multiple(gold_list, test_list, value_for_div_by_0=0.0):
# accumulate counts for all gold/test files
pcounts = np.array([0, 0, 0, 0], dtype=np.int32)
rcounts = np.array([0, 0, 0, 0], dtype=np.int32)
for goldalign, testalign in zip(gold_list, test_list):
pcounts += _precision(goldalign=goldalign, testalign=testalign)
# recall is precision with no insertion/deletion and swap args
test_no_del = [(x, y) for x, y in testalign if len(x) and len(y)]
gold_no_del = [(x, y) for x, y in goldalign if len(x) and len(y)]
rcounts += _precision(goldalign=test_no_del, testalign=gold_no_del)
# Compute results
# pcounts: tpstrict,fnstrict,tplax,fnlax
# rcounts: tpstrict,fpstrict,tplax,fplax
if pcounts[0] + pcounts[1] == 0:
pstrict = value_for_div_by_0
else:
pstrict = pcounts[0] / float(pcounts[0] + pcounts[1])
if pcounts[2] + pcounts[3] == 0:
plax = value_for_div_by_0
else:
plax = pcounts[2] / float(pcounts[2] + pcounts[3])
if rcounts[0] + rcounts[1] == 0:
rstrict = value_for_div_by_0
else:
rstrict = rcounts[0] / float(rcounts[0] + rcounts[1])
if rcounts[2] + rcounts[3] == 0:
rlax = value_for_div_by_0
else:
rlax = rcounts[2] / float(rcounts[2] + rcounts[3])
if (pstrict + rstrict) == 0:
fstrict = value_for_div_by_0
else:
fstrict = 2 * (pstrict * rstrict) / (pstrict + rstrict)
if (plax + rlax) == 0:
flax = value_for_div_by_0
else:
flax = 2 * (plax * rlax) / (plax + rlax)
result = dict(recall_strict=rstrict,
recall_lax=rlax,
precision_strict=pstrict,
precision_lax=plax,
f1_strict=fstrict,
f1_lax=flax)
return result
def log_final_scores(res):
print(' ---------------------------------', file=sys.stderr)
print('| | Strict | Lax |', file=sys.stderr)
print('| Precision | {precision_strict:.3f} | {precision_lax:.3f} |'.format(**res), file=sys.stderr)
print('| Recall | {recall_strict:.3f} | {recall_lax:.3f} |'.format(**res), file=sys.stderr)
print('| F1 | {f1_strict:.3f} | {f1_lax:.3f} |'.format(**res), file=sys.stderr)
print(' ---------------------------------', file=sys.stderr)
def main():
parser = argparse.ArgumentParser(
'Compute strict/lax precision and recall for one or more pairs of gold/test alignments',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-t', '--test', type=str, nargs='+', required=True,
help='one or more test alignment files')
parser.add_argument('-g', '--gold', type=str, nargs='+', required=True,
help='one or more gold alignment files')
args = parser.parse_args()
if len(args.test) != len(args.gold):
raise Exception('number of gold/test files must be the same')
gold_list = [read_alignments(x) for x in args.gold]
test_list = [read_alignments(x) for x in args.test]
res = score_multiple(gold_list=gold_list, test_list=test_list)
log_final_scores(res)
if __name__ == '__main__':
main()