-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathminimization_test.py
220 lines (176 loc) · 5.97 KB
/
minimization_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from importlib import reload
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
# disable unused import warnings for casadi
from casadi import * # pylint: disable=W0614
import numpy as np
import minsurf as ms # pylint: disable=E0401
# for a more detailed description: see seminar_summary.pdf, ch. 3.5
# newton-cotes quadrature rank
# m=1: midpoint rule
# m=2: trapezoidal rule
# m=3: Simpson's rule
m = 3
# number of individual intervals to divide
# [0,1] into
n = 10
# N is the number of individual grid points
# on which the surface integrand is
# to be evaluated
N = m + (n-1)*(m-1)
# generate the grid points in each
# coordinate direction
X = np.linspace(0, 1, N)
Y = X
# define the surface boundary values
# on [x,0], [x,1], [0,y], [1,y]
B = np.zeros((N, 4))
# set some individual boundarypoints if desired
#B[0, 0] = 1
#B[0, 1] = 1
#B[0, 2] = 0
#B[0, 3] = 0
#B[-1, 3] = 1
# define a quadratic function for boundary and
# interior constraints
b = 2*(X-0.5)**2 + 0.5
# B contains - from left to right - the four
# boundary constraint functions:
# B[:,0] = z(x,0)
# B[:,1] = z(0,y)
# B[:,2] = z(x,1)
# B[:,3] = z(1,y)
B = np.tile(np.atleast_2d(b).T, [1,4])
# in this example: set the x-axis boundaries
# to negative quadratic functions
B[:,0] = -B[:,0] + 1
B[:,2] = -B[:,2] + 1
# other boundary curves include:
# "the pringle"
#b = 2*(X-0.5)**2
#B = np.tile(np.atleast_2d(b).T, [1,4])
#B[:,0] = -B[:,0] + 1
#B[:,2] = -B[:,2] + 1
# double positive parabola
#b = 0.5*b - 0.25
#B = np.tile(np.atleast_2d(b).T, [1,4])
# minsurf supplies two functions which yield a casadi symbolic
# argument sym_arg representing the discretized grid function z and
# a corresponding expression sfc representing the discretized surface
# functional S(z) (see (3.7) in seminar_summary.pdf)
# the first function does not include any constraints
# it can be used to compute an approximation of the surface
# area of the graph of a function on [0,1]^2
#[sfc, sym_arg, N] = ms.surface_composite_newton_cotes(0, 1, n, m)
# the second function includes constraints on the boundary of [0,1]^2
# and the additional option of interior constraints in the form of
# a quadratic function similar to the boundary constraints ("an arch")
# or simply two peaks at [0.25,0.5] and [0.75,0.5]
[sfc, sym_arg, N] = ms.interior_constrained_surface_composite_newton_cotes(0, 1, B, n, m, interior="arch")
# create a casadi function object from the symbolic expressions
s_f = Function('s_f', [sym_arg], [sfc])
# prepare the initial value: a grid function on a [0,1] mesh grid
[X, Y] = np.meshgrid(X, Y)
# spherical initial surface:
#Z = np.sqrt(1 - X**2 - Y**2)
#Z[np.isnan(Z)] = 0
# constant initial surface satisfying the boundary constraints
Z = 2*np.ones((N,N))
Z[0,:] = B[:,0]
Z[:,0] = B[:,1]
Z[-1,:] = B[:,2]
Z[:,-1] = B[:,3]
# and the interior constraints:
# either the described two peaks
#Z[N//4, N//2] = 1
#Z[3*N//4, N//2] = 1
# or the mentioned interior "arch" constraint
b = np.linspace(0,1,3*N//4 - N//4)
b = -(b - 0.5)**2 + 1
Z[N//4:3*N//4,N//2] = b
# as a test: evaluate the surface area functional on
# the initial value
print("s_f(Z): ", s_f(Z))
# and the initial value minus the surface area of the
# quarter circle outside of the spherical initial value
print("s_f(Z) - (1 - pi/4): ", s_f(Z) - (1 - np.pi/4))
# for a normal spherical initial value this gives
# 1/8th the surface area of the unit sphere
# set the initial value z_0 to z
# and the current iterate z to z_0
z_0 = Z
z = z_0
# use a quick and dirty gradient descent method with
# an Armijo line search to minimize the surface
# functional
# set the Armijo line search and gradient descent
# parameters and tolerance
gamma = 1
delta = 0.1
tol = 1e-4
# initiate the norm of the gradient to tol+1 so
# we enter the loop
norm_gradfz = tol + 1
# normally, this loop starts the gradient descent
# procedure and generates surface plots of
# every 10th iterate to be glued together into an
# animation using ffmpeg
# this demonstration just plots the final result
# number of iterations and count of surface plot
# snapshots of iterates so far
it = 0
cnt = 0
while it <= 5000 and norm_gradfz >= tol:
sigma = gamma
# compute the gradient of the surface functional
sym_gradf = gradient(sfc, sym_arg)
func_gradf = Function('func_gradf', [sym_arg], [sym_gradf])
# compute the function in z (yielding a symbolic expression)
fz = s_f(z)
# convert the expression into a number
fz = fz.toarray()
# do the same with the gradient
gradfz = func_gradf(z)
gradfz = gradfz.toarray()
# reshape the gradient to apply the standard
# euclidean norm
gradfz_reshaped = gradfz.T.reshape((N**2, 1))
gradfz_sq = np.dot(gradfz_reshaped.T, gradfz_reshaped)
norm_gradfz = np.sqrt(gradfz_sq)
# perform the line search to determine the step size
sigma = gamma
phi = s_f(z - sigma * gradfz)
phi = phi.toarray()
while phi > (fz - delta * sigma * gradfz_sq):
sigma = sigma/2
phi = s_f(z - sigma * gradfz)
phi = phi.toarray()
# perform the gradient step
z = z - sigma * gradfz
# set up the function values and the gradient
# for the next iteration
gradfz = func_gradf(z)
gradfz = gradfz.toarray()
gradfz_reshaped = gradfz.T.reshape((N**2, 1))
gradfz_sq = np.dot(gradfz_reshaped.T, gradfz_reshaped)
norm_gradfz = np.sqrt(gradfz_sq)
fz = s_f(z)
fz = fz.toarray()
it = it + 1
# take a surface plot snapshot of every 10th iterate
if(it % 10 == 0):
#fig = plt.figure()
#ax = fig.gca(projection='3d')
#ax.set_zlim(0, 1)
#ax.plot_surface(X, Y, z, color='c')
#plt.savefig('./plot_temp/surface_test'+ str(cnt) +'.png')
#plt.close(fig)
cnt = cnt + 1
print("it, norm_gradfz: ", it, norm_gradfz)
# make a surface plot of the final iterate
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.set_zlim(0, 1)
ax.plot_surface(X, Y, z, color='c')
plt.savefig('./plot_temp/surface_test'+ str(it) +'.png')
plt.close(fig)