forked from clarkkev/deep-coref
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
146 lines (119 loc) · 4.34 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import json
import subprocess
import pickle
import os
import shutil
import sys
import numpy as np
import time
def load_pickle(fname):
with open(fname, 'rb') as f:
return pickle.load(f)
def write_pickle(o, fname):
with open(fname, 'wb') as f:
pickle.dump(o, f, -1)
def load_json_lines(fname):
with open(fname, 'rb') as f:
for line in f:
yield json.loads(line)
def lines_in_file(fname):
return int(subprocess.check_output(
['wc', '-l', fname]).strip().split()[0])
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def rmkdir(path):
if os.path.exists(path):
shutil.rmtree(path)
os.makedirs(path)
def sizeof_fmt(num, suffix='B'):
for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']:
if abs(num) < 1024.0:
return "%3.1f%s%s" % (num, unit, suffix)
num /= 1024.0
return "%.1f%s%s" % (num, 'Yi', suffix)
def logged_loop(iterable, n=None):
if n is None:
n = len(iterable)
step = max(1, n / 1000)
prog = Progbar(n)
for i, elem in enumerate(iterable):
if i % step == 0 or i == n - 1:
prog.update(i + 1)
yield elem
# slightly modified from keras
class Progbar(object):
def __init__(self, target, width=30, verbose=1):
self.width = width
self.target = target
self.sum_values = {}
self.unique_values = []
self.start = time.time()
self.total_width = 0
self.seen_so_far = 0
self.verbose = verbose
def update(self, current, values=[], exact=[]):
for k, v in values:
if k not in self.sum_values:
self.sum_values[k] = [v * (current - self.seen_so_far), current - self.seen_so_far]
self.unique_values.append(k)
else:
self.sum_values[k][0] += v * (current - self.seen_so_far)
self.sum_values[k][1] += (current - self.seen_so_far)
for k, v in exact:
if k not in self.sum_values:
self.unique_values.append(k)
self.sum_values[k] = [v, 1]
self.seen_so_far = current
now = time.time()
if self.verbose == 1:
prev_total_width = self.total_width
sys.stdout.write("\b" * prev_total_width)
sys.stdout.write("\r")
numdigits = int(np.floor(np.log10(self.target))) + 1
barstr = '%%%dd/%%%dd [' % (numdigits, numdigits)
bar = barstr % (current, self.target)
prog = float(current)/self.target
prog_width = int(self.width*prog)
if prog_width > 0:
bar += ('='*(prog_width-1))
if current < self.target:
bar += '>'
else:
bar += '='
bar += ('.'*(self.width-prog_width))
bar += ']'
sys.stdout.write(bar)
self.total_width = len(bar)
if current:
time_per_unit = (now - self.start) / current
else:
time_per_unit = 0
eta = time_per_unit*(self.target - current)
info = ''
if current < self.target:
info += ' - ETA: %ds' % eta
else:
info += ' - %ds' % (now - self.start)
for k in self.unique_values:
if type(self.sum_values[k]) is list:
info += ' - %s: %.4f' % (k, self.sum_values[k][0] /
max(1, self.sum_values[k][1]))
else:
info += ' - %s: %s' % (k, self.sum_values[k])
self.total_width += len(info)
if prev_total_width > self.total_width:
info += ((prev_total_width-self.total_width) * " ")
sys.stdout.write(info)
sys.stdout.flush()
if current >= self.target:
sys.stdout.write("\n")
if self.verbose == 2:
if current >= self.target:
info = '%ds' % (now - self.start)
for k in self.unique_values:
info += ' - %s: %.4f' % (k, self.sum_values[k][0] /
max(1, self.sum_values[k][1]))
sys.stdout.write(info + "\n")
def add(self, n, values=[]):
self.update(self.seen_so_far+n, values)