This repository has been archived by the owner on Mar 29, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·122 lines (96 loc) · 4.16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#!/usr/bin/env python3
import requests
import json
import os
import matplotlib.pyplot as plot
import seaborn
import pandas
import numpy as np
from const import *
from language_info import *
def main():
initialze()
all_data = []
all_normalized_data = None
for language_info in LANGUAGE_INFOS:
print("start " + language_info.get_lang_name())
lang_name = language_info.get_lang_name()
local_data = language_info.get_lang_quolity()
local_data = set(local_data)
all_data.extend(local_data)
cur_data = pandas.DataFrame(
{"language": lang_name, "ccn": pandas.Series([x.ccn for x in local_data])}
)
cur_normalized_data = delete_outliner(cur_data)
all_normalized_data = (
cur_normalized_data
if all_normalized_data is None
else pandas.concat([all_normalized_data, cur_normalized_data])
)
print("data num :" + str(len(all_data)))
draw_by_language(lang_name, all_normalized_data.drop_duplicates())
draw_most_yabe(all_data)
def initialze():
os.makedirs(Const.PROJECTS_PATH, exist_ok=True)
os.makedirs(Const.RESULT_PATH, exist_ok=True)
if os.path.isfile(Const.RESULT_BY_LANGUAGE):
os.remove(Const.RESULT_BY_LANGUAGE)
if os.path.isfile(Const.RESULT_MOST_YABE):
os.remove(Const.RESULT_MOST_YABE)
lang_result = open(Const.RESULT_BY_LANGUAGE, mode="a")
lang_result.write("language" + "," + "ccn" + "\n")
lang_result.close()
plot.figure(figsize=(16, 10), dpi=80)
plot.title("Density Plot of ccn by language", fontsize=22)
plot.legend(
title="language",
loc="center left",
bbox_to_anchor=(1, 0.5),
facecolor="white",
frameon=False,
)
def write_by_language(lang_name, data):
lang_result = open(Const.RESULT_BY_LANGUAGE, mode="a")
for func_info in data:
lang_result.write(func_info.lang + ",")
lang_result.write(func_info.ccn + "\n")
lang_result.close()
def write_most_yabe(all_data):
result = sorted(all_data, key=lambda x: x.ccn, reverse=True)
all_result = open(Const.RESULT_MOST_YABE, mode="a")
for func_info in result[0:1000]:
all_result.write(func_info.name + "," + func_info.ccn + "\n")
all_result.close()
def draw_by_language(lang_name, df):
colors = seaborn.hls_palette(24, l=0.5, s=1)
# distribution graph
# seaborn.kdeplot(df.loc[df['language'] == "python", "ccn"], shade=True, color=colors[0], label="python", alpha=.7)
# seaborn.kdeplot(df.loc[df['language'] == "cpp", "ccn"], shade=True, color=colors[1], label="cpp", alpha=.7)
# seaborn.kdeplot(df.loc[df['language'] == "java", "ccn"], shade=True, color=colors[2], label="java", alpha=.7)
# seaborn.kdeplot(df.loc[df['language'] == "javascript", "ccn"], shade=True, color=colors[3], label="javascript", alpha=.7)
# seaborn.kdeplot(df.loc[df['language'] == "swift", "ccn"], shade=True, color=colors[4], label="swift", alpha=.7)
# seaborn.kdeplot(df.loc[df['language'] == "ruby", "ccn"], shade=True, color=colors[5], label="ruby", alpha=.7)
# seaborn.kdeplot(df.loc[df['language'] == "php", "ccn"], shade=True, color=colors[6], label="php", alpha=.7)
# seaborn.kdeplot(df.loc[df['language'] == "scala", "ccn"], shade=True, color=colors[7], label="scala", alpha=.7)
# seaborn.kdeplot(df.loc[df['language'] == "go", "ccn"], shade=True, color=colors[8], label="go", alpha=.7)
# seaborn.kdeplot(df.loc[df['language'] == "lua", "ccn"], shade=True, color=colors[9], label="lua", alpha=.7)
# violin graph
seaborn.violinplot(x="language", y="ccn", data=df, scale="width", inner="quartile")
# violin graph
# seaborn.boxplot(x='language', y='ccn', data=df, notch=False)
plot.show()
def draw_most_yabe(all_data):
all_data = sorted(set(all_data), key=lambda x: x.ccn, reverse=True)
for x in all_data[0:100]:
print(x)
def delete_outliner(df):
col = df.iloc[:, 1]
average = np.mean(col)
sd = np.std(col)
outlier_min = average - (sd) * 2
outlier_max = average + (sd) * 2
df = df[df["ccn"] >= outlier_min]
df = df[df["ccn"] <= outlier_max]
return df
if __name__ == "__main__":
main()