-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
140 lines (103 loc) · 3.42 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from models.ResNetSE34L import MainModel
from loader import test_dataset_loader
from tqdm import tqdm
from tuneThreshold import ComputeErrorRates, tuneThresholdfromScore
from trainer.ModelWithHead import ModelWithHead
import torch
import itertools
import re
import random
import numpy as np
import torch.nn.functional as F
import pandas as pd
#####################
# start test
#####################
test_list = "./data/test_list_cnceleb.txt"
test_path = "./data/cnceleb/eval"
nDataLoaderThread = 6
num_eval = 10
lines = []
files = []
feats = {}
# Read all lines
with open(test_list) as f:
lines = f.readlines()
# Get a list of unique file names
files = list(itertools.chain(*[x.strip().split()[-2:] for x in lines]))
setfiles = list(set(files))
setfiles.sort()
# Define test data loader
test_dataset = test_dataset_loader(
setfiles, test_path, num_eval=num_eval, eval_frames=300)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=1,
shuffle=False,
num_workers=nDataLoaderThread,
drop_last=False,
sampler=None
)
if __name__ == '__main__':
model_args = dict(
nOut=512,
encoder_type='SAP',
n_mels=40,
log_input=True
)
model = MainModel(**model_args)
loaded_dict = torch.load('./save/ResNetSE34L_sup/model/model-100.model')
model.load_state_dict(loaded_dict)
print('model loaded!')
model.eval()
model.to(torch.device('cuda'))
########## extract features ##########
print('--- extract features ---')
pbar = tqdm(test_loader, total=len(test_loader))
features = []
labels = []
for data in pbar:
# data[0]: size(1,10,48240)
# data[1]: tuple(fdir, )
inp1 = data[0][0].cuda()
with torch.no_grad():
ref_feat = model(inp1).detach().cpu()
mean_feat = torch.mean(ref_feat, dim=0)
label = re.findall(r'(id\d+)', data[1][0])[0]
features.append(mean_feat.numpy())
labels.append(label)
feats[data[1][0]] = ref_feat
########## compute the scores ##########
all_scores = []
all_labels = []
all_trials = []
pbar = tqdm(lines)
for line in pbar:
data = line.split()
# Append random label if missing
if len(data) == 2:
data = [random.randint(0, 1)] + data
ref_feat = feats[data[1]].cuda()
com_feat = feats[data[2]].cuda()
# normalize feature
ref_feat = F.normalize(ref_feat, p=2, dim=1)
com_feat = F.normalize(com_feat, p=2, dim=1)
# euclidean dis
dist = torch.cdist(ref_feat.reshape(
num_eval, -1), com_feat.reshape(num_eval, -1)).detach().cpu().numpy()
score = -1 * np.mean(dist)
# cos dis
# dist = torch.matmul(ref_feat, com_feat.T).detach().cpu().numpy()
# score = dist.mean()
all_scores.append(score)
all_labels.append(int(data[0]))
all_trials.append(data[1] + " " + data[2])
_, eer, _, _ = tuneThresholdfromScore(all_scores, all_labels, [1, 0.1])
fnrs, fprs, thresholds = ComputeErrorRates(all_scores, all_labels)
print("test finish! ")
print(f"{eer = }")
df = pd.DataFrame({"label": all_labels, "score": all_scores})
split = pd.Series(all_trials).str.split(" ", expand = True)
split.columns = ["enroll", "test"]
df = pd.concat([df, split], axis = 1)
df.to_csv(f"./scores-{eer :.3f}.csv", index = False)