-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainSpeakerNet.py
213 lines (162 loc) · 6.24 KB
/
trainSpeakerNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from torch.utils.tensorboard import SummaryWriter
from utils import get_args
from tuneThreshold import *
from trainer.JointTrainer import JointTrainer
from loader import *
from trainer import *
import glob
import os
import shutil
import datetime
from multiprocessing.sharedctypes import Value
import os.path
import sys
import zipfile
import torch.cuda
import torch
torch.cuda.empty_cache()
args = get_args()
logdir = f'./logs/{args.experiment_name}'
def evaluate(trainer):
sc, lab, _ = trainer.evaluateFromList(**vars(args))
_, eer, _, _ = tuneThresholdfromScore(sc, lab, [1, 0.1])
fnrs, fprs, thresholds = ComputeErrorRates(sc, lab)
mindcf, _ = ComputeMinDcf(fnrs, fprs, thresholds, args.dcf_p_target, args.dcf_c_miss,
args.dcf_c_fa)
return eer, mindcf
def save_scripts():
# save training code and params
pyfiles = glob.glob('./*.py') + glob.glob('./*/*.py')
strtime = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
zipf = zipfile.ZipFile(
f'{args.result_save_path}/run{strtime}.zip',
'w',
zipfile.ZIP_DEFLATED)
for file in pyfiles:
zipf.write(file)
zipf.close()
with open(args.result_save_path + '/run%s.cmd' % strtime, 'w') as f:
f.write('%s' % args)
def get_ssl_loader(train_list=None, train_path=None):
if train_list is not None and train_path is not None:
args.train_list = train_list
args.train_path = train_path
train_dataset = ssl_dataset_loader(**vars(args))
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
num_workers=args.nDataLoaderThread,
pin_memory=False,
worker_init_fn=worker_init_fn,
drop_last=False,
shuffle=True
)
return train_loader
def get_sup_loader(train_list=None, train_path=None):
if train_list is not None and train_path is not None:
args.train_list = train_list
args.train_path = train_path
sup_dataset = train_dataset_loader(**vars(args))
sup_sampler = train_dataset_sampler(sup_dataset, **vars(args))
train_loader = torch.utils.data.DataLoader(
sup_dataset,
batch_size=args.batch_size,
num_workers=args.nDataLoaderThread,
pin_memory=False,
worker_init_fn=worker_init_fn,
drop_last=False,
sampler=sup_sampler
)
return train_loader
def inf_train_gen(loader):
while True:
for data, label in loader:
yield data, label
def main_worker(args):
writer = SummaryWriter(logdir)
############### load models ###############
if args.training_mode == 'ssl':
train_loader = get_ssl_loader()
trainer = SSLTrainer(**vars(args))
elif args.training_mode == 'joint':
train_loader = get_ssl_loader(
train_list=args.ssl_list, train_path=args.ssl_path
)
sup_loader = get_sup_loader(
train_list=args.sup_list, train_path=args.sup_path
)
sup_gen = inf_train_gen(sup_loader)
trainer = JointTrainer(supervised_gen=sup_gen, **vars(args))
elif args.training_mode == 'supervised':
train_loader = get_sup_loader()
trainer = SupervisedTrainer(**vars(args))
else:
raise ValueError("please specify a valid training mode")
# either load the initial_model or read the previous model files
it = 1
if (args.initial_model != ''):
trainer.loadParameters(args.initial_model)
print('model {} loaded!'.format(args.initial_model))
# restart training
else:
modelfiles = glob.glob(f'{args.model_save_path}/model0*.model')
if len(modelfiles) > 1:
modelfiles.sort()
trainer.loadParameters(modelfiles[-1])
print('model {} loaded from previous state!'.format(
modelfiles[-1]))
it = int(os.path.splitext(
os.path.basename(modelfiles[-1]))[0][5:]) + 1
for _ in range(1, it):
trainer.__scheduler__.step()
# evaluation code
# this is a separate command, not during training.
if args.eval == True:
pytorch_total_params = sum(p.numel()
for p in trainer.__model__.parameters())
print('total params: ', pytorch_total_params)
print('Test list: ', args.test_list)
eer, mindcf = evaluate(trainer)
print(f'eer: {eer:.4f}, minDCF: {mindcf:4f}')
return
# core training script
print(f'training model: {args.training_mode}')
for it in range(it, args.max_epoch + 1):
print(f'epoch {it}')
# train_network: iterate through all the data
loss = trainer.train_network(train_loader, it)
if args.training_mode == 'joint':
loss_total, loss_ssl, loss_sup = loss
writer.add_scalar('loss_total/Train', loss_total, it)
writer.add_scalar('loss_ssl/Train', loss_ssl, it)
writer.add_scalar('loss_sup/Train', loss_sup, it)
clr = trainer.__scheduler__.get_last_lr()[0]
print(
f'Epoch {it}, {loss_total = :.2f}, {loss_ssl = :.2f} {loss_sup = :.2f} {clr = :.8f}')
else:
clr = trainer.__scheduler__.get_last_lr()[0]
writer.add_scalar('Loss/Train', loss, it)
print(f'Epoch {it}, {loss = :.2f} {clr = :.8f}')
if it % args.test_interval == 0:
eer, mindcf = evaluate(trainer)
print(f'\n Epoch {it}, VEER {eer:.4f}, MinDCF: {mindcf:.5f}')
mpath = f'{args.model_save_path}/model-{it}.model'
trainer.saveParameters(mpath)
save_scripts()
writer.add_scalar('EER/Eval', eer, it)
def main():
if os.path.exists(logdir):
shutil.rmtree(logdir)
args.model_save_path = args.save_path + "/model"
args.result_save_path = args.save_path + "/result"
args.feat_save_path = args.save_path + '/feature'
# exps/modelname/model
os.makedirs(args.model_save_path, exist_ok=True)
os.makedirs(args.result_save_path, exist_ok=True)
print(f"Python version: {sys.version}")
print(f"Pytorch version: {torch.__version__}")
print(f"Number of GPUs: {torch.cuda.device_count()}")
print(f"Save path: {args.save_path}")
main_worker(args)
if __name__ == "__main__":
main()