-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFRED_output_translator.py
142 lines (126 loc) · 4.99 KB
/
FRED_output_translator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import base_output_translator
import pandas as pd
import csv
import os
import getopt, sys
def main(argv):
filename = ''
try:
opts, args = getopt.getopt(argv,"hi:o:t:",["ifile="])
except getopt.GetoptError:
print('test.py -i <inputfile>')
for opt, arg in opts:
if opt == '-h':
print('test.py -i <inputfile> -o <outputlocation>')
sys.exit()
elif opt in ("-i", "--ifile"):
filename = arg
elif opt in("-o", "--olocation"):
output_location = arg
elif opt in("-t", "--tempdir"):
temp_file = arg
translate_output(filename, output_location, temp_file)
def translate_output(filename, output_location, temp_file):
# age,gender,race,location,simulator_time,infection_state,disease_state,count
df = base_output_translator.hdf5_to_dataframe(filename)
df.to_csv(temp_file, encoding='utf-8')
data = {}
data.setdefault('age', [])
data.setdefault('race', [])
data.setdefault('location', [])
data.setdefault('gender', [])
data.setdefault('day', [])
data.setdefault('infection_state', [])
data.setdefault('disease_state', [])
data.setdefault('count', [])
print("Beginning processing")
i = 0
with open(temp_file, newline='') as f:
reader = csv.reader(f)
for row in reader:
if(i!=0):
age = row[1]
race = row[2]
location = row[3]
gender = row[4]
day = row[5]
#pop_inc = df['N_i'][i]
#pop_prev = df['N_p']
#s_inc = df['S_i']
count = row[9]
# data['infection_state'].append('susceptible_prevalent')
# data['disease_state'].append('asymptomatic')
data['infection_state'].append(1)
data['disease_state'].append(0)
data['age'].append(age)
data['race'].append(race)
data['location'].append(location)
data['gender'].append(gender)
data['day'].append(day)
data['count'].append(count)
#e_inc = df['E_i']
count = row[11]
# data['infection_state'].append('latent_prevalent')
# data['disease_state'].append('asymptomatic')
data['infection_state'].append(2)
data['disease_state'].append(0)
data['age'].append(age)
data['race'].append(race)
data['location'].append(location)
data['gender'].append(gender)
data['day'].append(day)
data['count'].append(count)
#i_inc = df['I_i']
count = row[13]
# data['infection_state'].append('infectious_prevalent')
# data['disease_state'].append('asymptomatic')
data['infection_state'].append(3)
data['disease_state'].append(0)
data['age'].append(age)
data['race'].append(race)
data['location'].append(location)
data['gender'].append(gender)
data['day'].append(day)
data['count'].append(count)
#symp_inc = df['Y_i']
count = row[15]
# data['infection_state'].append('infectious_prevalent')
# data['disease_state'].append('symptomatic')
data['infection_state'].append(3)
data['disease_state'].append(1)
data['age'].append(age)
data['race'].append(race)
data['location'].append(location)
data['gender'].append(gender)
data['day'].append(day)
data['count'].append(count)
#r_inc = df['R_i']
count = row[17]
# data['infection_state'].append('recovered_prevalent')
# data['disease_state'].append('asymptomatic')
data['infection_state'].append(4)
data['disease_state'].append(0)
data['age'].append(age)
data['race'].append(race)
data['location'].append(location)
data['gender'].append(gender)
data['day'].append(day)
data['count'].append(count)
i = i+1
if(i%1000000==0):
print(row)
print("Processing complete")
os.remove(temp_file)
dataFrame = pd.DataFrame(data)
print(dataFrame.shape)
dataFrame.to_hdf(output_location+'modifiedOutput_compressed.h5','df',format='table',mode='w', complevel=9, complib='zlib')
print("Modified hdf5 file created")
# hdf5_file = h5py.File('modifiedOutput_compressed.h5', 'r')
#
# dataset = list(hdf5_file.keys())[0]
# hdf5_file.close()
# testDF = pd.read_hdf('modifiedOutput_compressed.h5', key=dataset)
# print(testDF.shape)
# print(testDF[:10])
if __name__ == "__main__":
main(sys.argv[1:])