-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path实验报告.html
865 lines (793 loc) · 80.8 KB
/
实验报告.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
<!doctype html>
<html>
<head>
<meta charset='UTF-8'><meta name='viewport' content='width=device-width initial-scale=1'>
<link href='https://fonts.loli.net/css?family=Open+Sans:400italic,700italic,700,400&subset=latin,latin-ext' rel='stylesheet' type='text/css' /><style type='text/css'>html {overflow-x: initial !important;}:root { --bg-color:#ffffff; --text-color:#333333; --select-text-bg-color:#B5D6FC; --select-text-font-color:auto; --monospace:"Lucida Console",Consolas,"Courier",monospace; --title-bar-height:20px; }
.mac-os-11 { --title-bar-height:28px; }
html { font-size: 14px; background-color: var(--bg-color); color: var(--text-color); font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; -webkit-font-smoothing: antialiased; }
h1, h2, h3, h4, h5 { white-space: pre-wrap; }
body { margin: 0px; padding: 0px; height: auto; inset: 0px; font-size: 1rem; line-height: 1.42857; overflow-x: hidden; background: inherit; tab-size: 4; }
iframe { margin: auto; }
a.url { word-break: break-all; }
a:active, a:hover { outline: 0px; }
.in-text-selection, ::selection { text-shadow: none; background: var(--select-text-bg-color); color: var(--select-text-font-color); }
#write { margin: 0px auto; height: auto; width: inherit; word-break: normal; overflow-wrap: break-word; position: relative; white-space: normal; overflow-x: visible; padding-top: 36px; }
#write.first-line-indent p { text-indent: 2em; }
#write.first-line-indent li p, #write.first-line-indent p * { text-indent: 0px; }
#write.first-line-indent li { margin-left: 2em; }
.for-image #write { padding-left: 8px; padding-right: 8px; }
body.typora-export { padding-left: 30px; padding-right: 30px; }
.typora-export .footnote-line, .typora-export li, .typora-export p { white-space: pre-wrap; }
.typora-export .task-list-item input { pointer-events: none; }
@media screen and (max-width: 500px) {
body.typora-export { padding-left: 0px; padding-right: 0px; }
#write { padding-left: 20px; padding-right: 20px; }
}
#write li > figure:last-child { margin-bottom: 0.5rem; }
#write ol, #write ul { position: relative; }
img { max-width: 100%; vertical-align: middle; image-orientation: from-image; }
button, input, select, textarea { color: inherit; font: inherit; }
input[type="checkbox"], input[type="radio"] { line-height: normal; padding: 0px; }
*, ::after, ::before { box-sizing: border-box; }
#write h1, #write h2, #write h3, #write h4, #write h5, #write h6, #write p, #write pre { width: inherit; }
#write h1, #write h2, #write h3, #write h4, #write h5, #write h6, #write p { position: relative; }
p { line-height: inherit; }
h1, h2, h3, h4, h5, h6 { break-after: avoid-page; break-inside: avoid; orphans: 4; }
p { orphans: 4; }
h1 { font-size: 2rem; }
h2 { font-size: 1.8rem; }
h3 { font-size: 1.6rem; }
h4 { font-size: 1.4rem; }
h5 { font-size: 1.2rem; }
h6 { font-size: 1rem; }
.md-math-block, .md-rawblock, h1, h2, h3, h4, h5, h6, p { margin-top: 1rem; margin-bottom: 1rem; }
.hidden { display: none; }
.md-blockmeta { color: rgb(204, 204, 204); font-weight: 700; font-style: italic; }
a { cursor: pointer; }
sup.md-footnote { padding: 2px 4px; background-color: rgba(238, 238, 238, 0.7); color: rgb(85, 85, 85); border-radius: 4px; cursor: pointer; }
sup.md-footnote a, sup.md-footnote a:hover { color: inherit; text-transform: inherit; text-decoration: inherit; }
#write input[type="checkbox"] { cursor: pointer; width: inherit; height: inherit; }
figure { overflow-x: auto; margin: 1.2em 0px; max-width: calc(100% + 16px); padding: 0px; }
figure > table { margin: 0px; }
thead, tr { break-inside: avoid; break-after: auto; }
thead { display: table-header-group; }
table { border-collapse: collapse; border-spacing: 0px; width: 100%; overflow: auto; break-inside: auto; text-align: left; }
table.md-table td { min-width: 32px; }
.CodeMirror-gutters { border-right: 0px; background-color: inherit; }
.CodeMirror-linenumber { user-select: none; }
.CodeMirror { text-align: left; }
.CodeMirror-placeholder { opacity: 0.3; }
.CodeMirror pre { padding: 0px 4px; }
.CodeMirror-lines { padding: 0px; }
div.hr:focus { cursor: none; }
#write pre { white-space: pre-wrap; }
#write.fences-no-line-wrapping pre { white-space: pre; }
#write pre.ty-contain-cm { white-space: normal; }
.CodeMirror-gutters { margin-right: 4px; }
.md-fences { font-size: 0.9rem; display: block; break-inside: avoid; text-align: left; overflow: visible; white-space: pre; background: inherit; position: relative !important; }
.md-fences-adv-panel { width: 100%; margin-top: 10px; text-align: center; padding-top: 0px; padding-bottom: 8px; overflow-x: auto; }
#write .md-fences.mock-cm { white-space: pre-wrap; }
.md-fences.md-fences-with-lineno { padding-left: 0px; }
#write.fences-no-line-wrapping .md-fences.mock-cm { white-space: pre; overflow-x: auto; }
.md-fences.mock-cm.md-fences-with-lineno { padding-left: 8px; }
.CodeMirror-line, twitterwidget { break-inside: avoid; }
svg { break-inside: avoid; }
.footnotes { opacity: 0.8; font-size: 0.9rem; margin-top: 1em; margin-bottom: 1em; }
.footnotes + .footnotes { margin-top: 0px; }
.md-reset { margin: 0px; padding: 0px; border: 0px; outline: 0px; vertical-align: top; background: 0px 0px; text-decoration: none; text-shadow: none; float: none; position: static; width: auto; height: auto; white-space: nowrap; cursor: inherit; -webkit-tap-highlight-color: transparent; line-height: normal; font-weight: 400; text-align: left; box-sizing: content-box; direction: ltr; }
li div { padding-top: 0px; }
blockquote { margin: 1rem 0px; }
li .mathjax-block, li p { margin: 0.5rem 0px; }
li blockquote { margin: 1rem 0px; }
li { margin: 0px; position: relative; }
blockquote > :last-child { margin-bottom: 0px; }
blockquote > :first-child, li > :first-child { margin-top: 0px; }
.footnotes-area { color: rgb(136, 136, 136); margin-top: 0.714rem; padding-bottom: 0.143rem; white-space: normal; }
#write .footnote-line { white-space: pre-wrap; }
@media print {
body, html { border: 1px solid transparent; height: 99%; break-after: avoid; break-before: avoid; font-variant-ligatures: no-common-ligatures; }
#write { margin-top: 0px; border-color: transparent !important; padding-top: 0px !important; padding-bottom: 0px !important; }
.typora-export * { -webkit-print-color-adjust: exact; }
.typora-export #write { break-after: avoid; }
.typora-export #write::after { height: 0px; }
.is-mac table { break-inside: avoid; }
#write > p:nth-child(1) { margin-top: 0px; }
.typora-export-show-outline .typora-export-sidebar { display: none; }
figure { overflow-x: visible; }
}
.footnote-line { margin-top: 0.714em; font-size: 0.7em; }
a img, img a { cursor: pointer; }
pre.md-meta-block { font-size: 0.8rem; min-height: 0.8rem; white-space: pre-wrap; background: rgb(204, 204, 204); display: block; overflow-x: hidden; }
p > .md-image:only-child:not(.md-img-error) img, p > img:only-child { display: block; margin: auto; }
#write.first-line-indent p > .md-image:only-child:not(.md-img-error) img { left: -2em; position: relative; }
p > .md-image:only-child { display: inline-block; width: 100%; }
#write .MathJax_Display { margin: 0.8em 0px 0px; }
.md-math-block { width: 100%; }
.md-math-block:not(:empty)::after { display: none; }
.MathJax_ref { fill: currentcolor; }
[contenteditable="true"]:active, [contenteditable="true"]:focus, [contenteditable="false"]:active, [contenteditable="false"]:focus { outline: 0px; box-shadow: none; }
.md-task-list-item { position: relative; list-style-type: none; }
.task-list-item.md-task-list-item { padding-left: 0px; }
.md-task-list-item > input { position: absolute; top: 0px; left: 0px; margin-left: -1.2em; margin-top: calc(1em - 10px); border: none; }
.math { font-size: 1rem; }
.md-toc { min-height: 3.58rem; position: relative; font-size: 0.9rem; border-radius: 10px; }
.md-toc-content { position: relative; margin-left: 0px; }
.md-toc-content::after, .md-toc::after { display: none; }
.md-toc-item { display: block; color: rgb(65, 131, 196); }
.md-toc-item a { text-decoration: none; }
.md-toc-inner:hover { text-decoration: underline; }
.md-toc-inner { display: inline-block; cursor: pointer; }
.md-toc-h1 .md-toc-inner { margin-left: 0px; font-weight: 700; }
.md-toc-h2 .md-toc-inner { margin-left: 2em; }
.md-toc-h3 .md-toc-inner { margin-left: 4em; }
.md-toc-h4 .md-toc-inner { margin-left: 6em; }
.md-toc-h5 .md-toc-inner { margin-left: 8em; }
.md-toc-h6 .md-toc-inner { margin-left: 10em; }
@media screen and (max-width: 48em) {
.md-toc-h3 .md-toc-inner { margin-left: 3.5em; }
.md-toc-h4 .md-toc-inner { margin-left: 5em; }
.md-toc-h5 .md-toc-inner { margin-left: 6.5em; }
.md-toc-h6 .md-toc-inner { margin-left: 8em; }
}
a.md-toc-inner { font-size: inherit; font-style: inherit; font-weight: inherit; line-height: inherit; }
.footnote-line a:not(.reversefootnote) { color: inherit; }
.reversefootnote { font-family: ui-monospace, sans-serif; }
.md-attr { display: none; }
.md-fn-count::after { content: "."; }
code, pre, samp, tt { font-family: var(--monospace); }
kbd { margin: 0px 0.1em; padding: 0.1em 0.6em; font-size: 0.8em; color: rgb(36, 39, 41); background: rgb(255, 255, 255); border: 1px solid rgb(173, 179, 185); border-radius: 3px; box-shadow: rgba(12, 13, 14, 0.2) 0px 1px 0px, rgb(255, 255, 255) 0px 0px 0px 2px inset; white-space: nowrap; vertical-align: middle; }
.md-comment { color: rgb(162, 127, 3); opacity: 0.6; font-family: var(--monospace); }
code { text-align: left; vertical-align: initial; }
a.md-print-anchor { white-space: pre !important; border-width: initial !important; border-style: none !important; border-color: initial !important; display: inline-block !important; position: absolute !important; width: 1px !important; right: 0px !important; outline: 0px !important; background: 0px 0px !important; text-decoration: initial !important; text-shadow: initial !important; }
.os-windows.monocolor-emoji .md-emoji { font-family: "Segoe UI Symbol", sans-serif; }
.md-diagram-panel > svg { max-width: 100%; }
[lang="flow"] svg, [lang="mermaid"] svg { max-width: 100%; height: auto; }
[lang="mermaid"] .node text { font-size: 1rem; }
table tr th { border-bottom: 0px; }
video { max-width: 100%; display: block; margin: 0px auto; }
iframe { max-width: 100%; width: 100%; border: none; }
.highlight td, .highlight tr { border: 0px; }
mark { background: rgb(255, 255, 0); color: rgb(0, 0, 0); }
.md-html-inline .md-plain, .md-html-inline strong, mark .md-inline-math, mark strong { color: inherit; }
.md-expand mark .md-meta { opacity: 0.3 !important; }
mark .md-meta { color: rgb(0, 0, 0); }
@media print {
.typora-export h1, .typora-export h2, .typora-export h3, .typora-export h4, .typora-export h5, .typora-export h6 { break-inside: avoid; }
}
.md-diagram-panel .messageText { stroke: none !important; }
.md-diagram-panel .start-state { fill: var(--node-fill); }
.md-diagram-panel .edgeLabel rect { opacity: 1 !important; }
.md-fences.md-fences-math { font-size: 1em; }
.md-fences-advanced:not(.md-focus) { padding: 0px; white-space: nowrap; border: 0px; }
.md-fences-advanced:not(.md-focus) { background: inherit; }
.typora-export-show-outline .typora-export-content { max-width: 1440px; margin: auto; display: flex; flex-direction: row; }
.typora-export-sidebar { width: 300px; font-size: 0.8rem; margin-top: 80px; margin-right: 18px; }
.typora-export-show-outline #write { --webkit-flex:2; flex: 2 1 0%; }
.typora-export-sidebar .outline-content { position: fixed; top: 0px; max-height: 100%; overflow: hidden auto; padding-bottom: 30px; padding-top: 60px; width: 300px; }
@media screen and (max-width: 1024px) {
.typora-export-sidebar, .typora-export-sidebar .outline-content { width: 240px; }
}
@media screen and (max-width: 800px) {
.typora-export-sidebar { display: none; }
}
.outline-content li, .outline-content ul { margin-left: 0px; margin-right: 0px; padding-left: 0px; padding-right: 0px; list-style: none; overflow-wrap: anywhere; }
.outline-content ul { margin-top: 0px; margin-bottom: 0px; }
.outline-content strong { font-weight: 400; }
.outline-expander { width: 1rem; height: 1.42857rem; position: relative; display: table-cell; vertical-align: middle; cursor: pointer; padding-left: 4px; }
.outline-expander::before { content: ""; position: relative; font-family: Ionicons; display: inline-block; font-size: 8px; vertical-align: middle; }
.outline-item { padding-top: 3px; padding-bottom: 3px; cursor: pointer; }
.outline-expander:hover::before { content: ""; }
.outline-h1 > .outline-item { padding-left: 0px; }
.outline-h2 > .outline-item { padding-left: 1em; }
.outline-h3 > .outline-item { padding-left: 2em; }
.outline-h4 > .outline-item { padding-left: 3em; }
.outline-h5 > .outline-item { padding-left: 4em; }
.outline-h6 > .outline-item { padding-left: 5em; }
.outline-label { cursor: pointer; display: table-cell; vertical-align: middle; text-decoration: none; color: inherit; }
.outline-label:hover { text-decoration: underline; }
.outline-item:hover { border-color: rgb(245, 245, 245); background-color: var(--item-hover-bg-color); }
.outline-item:hover { margin-left: -28px; margin-right: -28px; border-left: 28px solid transparent; border-right: 28px solid transparent; }
.outline-item-single .outline-expander::before, .outline-item-single .outline-expander:hover::before { display: none; }
.outline-item-open > .outline-item > .outline-expander::before { content: ""; }
.outline-children { display: none; }
.info-panel-tab-wrapper { display: none; }
.outline-item-open > .outline-children { display: block; }
.typora-export .outline-item { padding-top: 1px; padding-bottom: 1px; }
.typora-export .outline-item:hover { margin-right: -8px; border-right: 8px solid transparent; }
.typora-export .outline-expander::before { content: "+"; font-family: inherit; top: -1px; }
.typora-export .outline-expander:hover::before, .typora-export .outline-item-open > .outline-item > .outline-expander::before { content: "−"; }
.typora-export-collapse-outline .outline-children { display: none; }
.typora-export-collapse-outline .outline-item-open > .outline-children, .typora-export-no-collapse-outline .outline-children { display: block; }
.typora-export-no-collapse-outline .outline-expander::before { content: "" !important; }
.typora-export-show-outline .outline-item-active > .outline-item .outline-label { font-weight: 700; }
.md-inline-math-container mjx-container { zoom: 0.95; }
mjx-container { break-inside: avoid; }
.CodeMirror { height: auto; }
.CodeMirror.cm-s-inner { background: inherit; }
.CodeMirror-scroll { overflow: auto hidden; z-index: 3; }
.CodeMirror-gutter-filler, .CodeMirror-scrollbar-filler { background-color: rgb(255, 255, 255); }
.CodeMirror-gutters { border-right: 1px solid rgb(221, 221, 221); background: inherit; white-space: nowrap; }
.CodeMirror-linenumber { padding: 0px 3px 0px 5px; text-align: right; color: rgb(153, 153, 153); }
.cm-s-inner .cm-keyword { color: rgb(119, 0, 136); }
.cm-s-inner .cm-atom, .cm-s-inner.cm-atom { color: rgb(34, 17, 153); }
.cm-s-inner .cm-number { color: rgb(17, 102, 68); }
.cm-s-inner .cm-def { color: rgb(0, 0, 255); }
.cm-s-inner .cm-variable { color: rgb(0, 0, 0); }
.cm-s-inner .cm-variable-2 { color: rgb(0, 85, 170); }
.cm-s-inner .cm-variable-3 { color: rgb(0, 136, 85); }
.cm-s-inner .cm-string { color: rgb(170, 17, 17); }
.cm-s-inner .cm-property { color: rgb(0, 0, 0); }
.cm-s-inner .cm-operator { color: rgb(152, 26, 26); }
.cm-s-inner .cm-comment, .cm-s-inner.cm-comment { color: rgb(170, 85, 0); }
.cm-s-inner .cm-string-2 { color: rgb(255, 85, 0); }
.cm-s-inner .cm-meta { color: rgb(85, 85, 85); }
.cm-s-inner .cm-qualifier { color: rgb(85, 85, 85); }
.cm-s-inner .cm-builtin { color: rgb(51, 0, 170); }
.cm-s-inner .cm-bracket { color: rgb(153, 153, 119); }
.cm-s-inner .cm-tag { color: rgb(17, 119, 0); }
.cm-s-inner .cm-attribute { color: rgb(0, 0, 204); }
.cm-s-inner .cm-header, .cm-s-inner.cm-header { color: rgb(0, 0, 255); }
.cm-s-inner .cm-quote, .cm-s-inner.cm-quote { color: rgb(0, 153, 0); }
.cm-s-inner .cm-hr, .cm-s-inner.cm-hr { color: rgb(153, 153, 153); }
.cm-s-inner .cm-link, .cm-s-inner.cm-link { color: rgb(0, 0, 204); }
.cm-negative { color: rgb(221, 68, 68); }
.cm-positive { color: rgb(34, 153, 34); }
.cm-header, .cm-strong { font-weight: 700; }
.cm-del { text-decoration: line-through; }
.cm-em { font-style: italic; }
.cm-link { text-decoration: underline; }
.cm-error { color: red; }
.cm-invalidchar { color: red; }
.cm-constant { color: rgb(38, 139, 210); }
.cm-defined { color: rgb(181, 137, 0); }
div.CodeMirror span.CodeMirror-matchingbracket { color: rgb(0, 255, 0); }
div.CodeMirror span.CodeMirror-nonmatchingbracket { color: rgb(255, 34, 34); }
.cm-s-inner .CodeMirror-activeline-background { background: inherit; }
.CodeMirror { position: relative; overflow: hidden; }
.CodeMirror-scroll { height: 100%; outline: 0px; position: relative; box-sizing: content-box; background: inherit; }
.CodeMirror-sizer { position: relative; }
.CodeMirror-gutter-filler, .CodeMirror-hscrollbar, .CodeMirror-scrollbar-filler, .CodeMirror-vscrollbar { position: absolute; z-index: 6; display: none; outline: 0px; }
.CodeMirror-vscrollbar { right: 0px; top: 0px; overflow: hidden; }
.CodeMirror-hscrollbar { bottom: 0px; left: 0px; overflow: auto hidden; }
.CodeMirror-scrollbar-filler { right: 0px; bottom: 0px; }
.CodeMirror-gutter-filler { left: 0px; bottom: 0px; }
.CodeMirror-gutters { position: absolute; left: 0px; top: 0px; padding-bottom: 10px; z-index: 3; overflow-y: hidden; }
.CodeMirror-gutter { white-space: normal; height: 100%; box-sizing: content-box; padding-bottom: 30px; margin-bottom: -32px; display: inline-block; }
.CodeMirror-gutter-wrapper { position: absolute; z-index: 4; background: 0px 0px !important; border: none !important; }
.CodeMirror-gutter-background { position: absolute; top: 0px; bottom: 0px; z-index: 4; }
.CodeMirror-gutter-elt { position: absolute; cursor: default; z-index: 4; }
.CodeMirror-lines { cursor: text; }
.CodeMirror pre { border-radius: 0px; border-width: 0px; background: 0px 0px; font-family: inherit; font-size: inherit; margin: 0px; white-space: pre; overflow-wrap: normal; color: inherit; z-index: 2; position: relative; overflow: visible; }
.CodeMirror-wrap pre { overflow-wrap: break-word; white-space: pre-wrap; word-break: normal; }
.CodeMirror-code pre { border-right: 30px solid transparent; width: fit-content; }
.CodeMirror-wrap .CodeMirror-code pre { border-right: none; width: auto; }
.CodeMirror-linebackground { position: absolute; inset: 0px; z-index: 0; }
.CodeMirror-linewidget { position: relative; z-index: 2; overflow: auto; }
.CodeMirror-wrap .CodeMirror-scroll { overflow-x: hidden; }
.CodeMirror-measure { position: absolute; width: 100%; height: 0px; overflow: hidden; visibility: hidden; }
.CodeMirror-measure pre { position: static; }
.CodeMirror div.CodeMirror-cursor { position: absolute; visibility: hidden; border-right: none; width: 0px; }
.CodeMirror div.CodeMirror-cursor { visibility: hidden; }
.CodeMirror-focused div.CodeMirror-cursor { visibility: inherit; }
.cm-searching { background: rgba(255, 255, 0, 0.4); }
span.cm-underlined { text-decoration: underline; }
span.cm-strikethrough { text-decoration: line-through; }
.cm-tw-syntaxerror { color: rgb(255, 255, 255); background-color: rgb(153, 0, 0); }
.cm-tw-deleted { text-decoration: line-through; }
.cm-tw-header5 { font-weight: 700; }
.cm-tw-listitem:first-child { padding-left: 10px; }
.cm-tw-box { border-style: solid; border-right-width: 1px; border-bottom-width: 1px; border-left-width: 1px; border-color: inherit; border-top-width: 0px !important; }
.cm-tw-underline { text-decoration: underline; }
@media print {
.CodeMirror div.CodeMirror-cursor { visibility: hidden; }
}
:root {
--side-bar-bg-color: #fafafa;
--control-text-color: #777;
}
@include-when-export url(https://fonts.loli.net/css?family=Open+Sans:400italic,700italic,700,400&subset=latin,latin-ext);
/* open-sans-regular - latin-ext_latin */
/* open-sans-italic - latin-ext_latin */
/* open-sans-700 - latin-ext_latin */
/* open-sans-700italic - latin-ext_latin */
html {
font-size: 16px;
-webkit-font-smoothing: antialiased;
}
body {
font-family: "Open Sans","Clear Sans", "Helvetica Neue", Helvetica, Arial, 'Segoe UI Emoji', sans-serif;
color: rgb(51, 51, 51);
line-height: 1.6;
}
#write {
max-width: 860px;
margin: 0 auto;
padding: 30px;
padding-bottom: 100px;
}
@media only screen and (min-width: 1400px) {
#write {
max-width: 1024px;
}
}
@media only screen and (min-width: 1800px) {
#write {
max-width: 1200px;
}
}
#write > ul:first-child,
#write > ol:first-child{
margin-top: 30px;
}
a {
color: #4183C4;
}
h1,
h2,
h3,
h4,
h5,
h6 {
position: relative;
margin-top: 1rem;
margin-bottom: 1rem;
font-weight: bold;
line-height: 1.4;
cursor: text;
}
h1:hover a.anchor,
h2:hover a.anchor,
h3:hover a.anchor,
h4:hover a.anchor,
h5:hover a.anchor,
h6:hover a.anchor {
text-decoration: none;
}
h1 tt,
h1 code {
font-size: inherit;
}
h2 tt,
h2 code {
font-size: inherit;
}
h3 tt,
h3 code {
font-size: inherit;
}
h4 tt,
h4 code {
font-size: inherit;
}
h5 tt,
h5 code {
font-size: inherit;
}
h6 tt,
h6 code {
font-size: inherit;
}
h1 {
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h2 {
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
/*@media print {
.typora-export h1,
.typora-export h2 {
border-bottom: none;
padding-bottom: initial;
}
.typora-export h1::after,
.typora-export h2::after {
content: "";
display: block;
height: 100px;
margin-top: -96px;
border-top: 1px solid #eee;
}
}*/
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h4 {
font-size: 1.25em;
}
h5 {
font-size: 1em;
}
h6 {
font-size: 1em;
color: #777;
}
p,
blockquote,
ul,
ol,
dl,
table{
margin: 0.8em 0;
}
li>ol,
li>ul {
margin: 0 0;
}
hr {
height: 2px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
overflow: hidden;
box-sizing: content-box;
}
li p.first {
display: inline-block;
}
ul,
ol {
padding-left: 30px;
}
ul:first-child,
ol:first-child {
margin-top: 0;
}
ul:last-child,
ol:last-child {
margin-bottom: 0;
}
blockquote {
border-left: 4px solid #dfe2e5;
padding: 0 15px;
color: #777777;
}
blockquote blockquote {
padding-right: 0;
}
table {
padding: 0;
word-break: initial;
}
table tr {
border: 1px solid #dfe2e5;
margin: 0;
padding: 0;
}
table tr:nth-child(2n),
thead {
background-color: #f8f8f8;
}
table th {
font-weight: bold;
border: 1px solid #dfe2e5;
border-bottom: 0;
margin: 0;
padding: 6px 13px;
}
table td {
border: 1px solid #dfe2e5;
margin: 0;
padding: 6px 13px;
}
table th:first-child,
table td:first-child {
margin-top: 0;
}
table th:last-child,
table td:last-child {
margin-bottom: 0;
}
.CodeMirror-lines {
padding-left: 4px;
}
.code-tooltip {
box-shadow: 0 1px 1px 0 rgba(0,28,36,.3);
border-top: 1px solid #eef2f2;
}
.md-fences,
code,
tt {
border: 1px solid #e7eaed;
background-color: #f8f8f8;
border-radius: 3px;
padding: 0;
padding: 2px 4px 0px 4px;
font-size: 0.9em;
}
code {
background-color: #f3f4f4;
padding: 0 2px 0 2px;
}
.md-fences {
margin-bottom: 15px;
margin-top: 15px;
padding-top: 8px;
padding-bottom: 6px;
}
.md-task-list-item > input {
margin-left: -1.3em;
}
@media print {
html {
font-size: 13px;
}
pre {
page-break-inside: avoid;
word-wrap: break-word;
}
}
.md-fences {
background-color: #f8f8f8;
}
#write pre.md-meta-block {
padding: 1rem;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border: 0;
border-radius: 3px;
color: #777777;
margin-top: 0 !important;
}
.mathjax-block>.code-tooltip {
bottom: .375rem;
}
.md-mathjax-midline {
background: #fafafa;
}
#write>h3.md-focus:before{
left: -1.5625rem;
top: .375rem;
}
#write>h4.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
#write>h5.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
#write>h6.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
.md-image>.md-meta {
/*border: 1px solid #ddd;*/
border-radius: 3px;
padding: 2px 0px 0px 4px;
font-size: 0.9em;
color: inherit;
}
.md-tag {
color: #a7a7a7;
opacity: 1;
}
.md-toc {
margin-top:20px;
padding-bottom:20px;
}
.sidebar-tabs {
border-bottom: none;
}
#typora-quick-open {
border: 1px solid #ddd;
background-color: #f8f8f8;
}
#typora-quick-open-item {
background-color: #FAFAFA;
border-color: #FEFEFE #e5e5e5 #e5e5e5 #eee;
border-style: solid;
border-width: 1px;
}
/** focus mode */
.on-focus-mode blockquote {
border-left-color: rgba(85, 85, 85, 0.12);
}
header, .context-menu, .megamenu-content, footer{
font-family: "Segoe UI", "Arial", sans-serif;
}
.file-node-content:hover .file-node-icon,
.file-node-content:hover .file-node-open-state{
visibility: visible;
}
.mac-seamless-mode #typora-sidebar {
background-color: #fafafa;
background-color: var(--side-bar-bg-color);
}
.md-lang {
color: #b4654d;
}
/*.html-for-mac {
--item-hover-bg-color: #E6F0FE;
}*/
#md-notification .btn {
border: 0;
}
.dropdown-menu .divider {
border-color: #e5e5e5;
opacity: 0.4;
}
.ty-preferences .window-content {
background-color: #fafafa;
}
.ty-preferences .nav-group-item.active {
color: white;
background: #999;
}
.menu-item-container a.menu-style-btn {
background-color: #f5f8fa;
background-image: linear-gradient( 180deg , hsla(0, 0%, 100%, 0.8), hsla(0, 0%, 100%, 0));
}
mjx-container[jax="SVG"] {
direction: ltr;
}
mjx-container[jax="SVG"] > svg {
overflow: visible;
min-height: 1px;
min-width: 1px;
}
mjx-container[jax="SVG"] > svg a {
fill: blue;
stroke: blue;
}
mjx-assistive-mml {
position: absolute !important;
top: 0px;
left: 0px;
clip: rect(1px, 1px, 1px, 1px);
padding: 1px 0px 0px 0px !important;
border: 0px !important;
display: block !important;
width: auto !important;
overflow: hidden !important;
-webkit-touch-callout: none;
-webkit-user-select: none;
-khtml-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
mjx-assistive-mml[display="block"] {
width: 100% !important;
}
mjx-container[jax="SVG"][display="true"] {
display: block;
text-align: center;
margin: 1em 0;
}
mjx-container[jax="SVG"][display="true"][width="full"] {
display: flex;
}
mjx-container[jax="SVG"][justify="left"] {
text-align: left;
}
mjx-container[jax="SVG"][justify="right"] {
text-align: right;
}
g[data-mml-node="merror"] > g {
fill: red;
stroke: red;
}
g[data-mml-node="merror"] > rect[data-background] {
fill: yellow;
stroke: none;
}
g[data-mml-node="mtable"] > line[data-line], svg[data-table] > g > line[data-line] {
stroke-width: 70px;
fill: none;
}
g[data-mml-node="mtable"] > rect[data-frame], svg[data-table] > g > rect[data-frame] {
stroke-width: 70px;
fill: none;
}
g[data-mml-node="mtable"] > .mjx-dashed, svg[data-table] > g > .mjx-dashed {
stroke-dasharray: 140;
}
g[data-mml-node="mtable"] > .mjx-dotted, svg[data-table] > g > .mjx-dotted {
stroke-linecap: round;
stroke-dasharray: 0,140;
}
g[data-mml-node="mtable"] > g > svg {
overflow: visible;
}
[jax="SVG"] mjx-tool {
display: inline-block;
position: relative;
width: 0;
height: 0;
}
[jax="SVG"] mjx-tool > mjx-tip {
position: absolute;
top: 0;
left: 0;
}
mjx-tool > mjx-tip {
display: inline-block;
padding: .2em;
border: 1px solid #888;
font-size: 70%;
background-color: #F8F8F8;
color: black;
box-shadow: 2px 2px 5px #AAAAAA;
}
g[data-mml-node="maction"][data-toggle] {
cursor: pointer;
}
mjx-status {
display: block;
position: fixed;
left: 1em;
bottom: 1em;
min-width: 25%;
padding: .2em .4em;
border: 1px solid #888;
font-size: 90%;
background-color: #F8F8F8;
color: black;
}
foreignObject[data-mjx-xml] {
font-family: initial;
line-height: normal;
overflow: visible;
}
mjx-container[jax="SVG2"] path[data-c], mjx-container[jax="SVG2"] use[data-c] {
stroke-width: 3;
}
g[data-mml-node="xypic"] path {
stroke-width: inherit;
}
.MathJax g[data-mml-node="xypic"] path {
stroke-width: inherit;
}
mjx-container[jax="SVG"] path[data-c], mjx-container[jax="SVG"] use[data-c] {
stroke-width: 0;
}
</style><title>实验报告</title>
</head>
<body class='typora-export os-windows'><div class='typora-export-content'>
<div id='write' class=''><h1 id='实验报告基于全连接网络的手写数字体识别'><span>实验报告:基于全连接网络的手写数字体识别</span></h1><ul><li><p><span>作者:王佳旭</span></p></li><li><p><span>学号:2021213444</span></p></li><li><p><span>班级:2021219111</span></p></li><li><p><span>学院:人工智能学院</span></p></li></ul><h2 id='文件夹说明'><span>文件夹说明</span></h2><figure><table><thead><tr><th><span>文件名</span></th><th><span>内容及作用</span></th></tr></thead><tbody><tr><td><span>mnist.pkl.gz</span></td><td><span>手写数字的数据集</span></td></tr><tr><td><span>network.py</span></td><td><span>实现识别手写数字的主要代码</span></td></tr><tr><td><span>execute.py</span></td><td><span>运行一个神经网网络的脚本</span></td></tr><tr><td><span>figure.py</span></td><td><span>执行小规模训练的绘图代码</span></td></tr><tr><td><span>mnist_loader.py</span></td><td><span>解压加载mnist数据集的脚本</span></td></tr><tr><td><span>result.json</span></td><td><span>用于存储的运行后的cost和accuracy</span></td></tr><tr><td><span>model.json</span></td><td><span>保存训练后的模型参数</span></td></tr><tr><td><span>requirements.txt</span></td><td><span>项目依赖的第三方库</span></td></tr></tbody></table></figure><p> </p><h2 id='代码实现的主要功能'><span>代码实现的主要功能</span></h2><h3 id='神经网络'><span>神经网络</span></h3><ol start='' ><li><p><span>指定神经网络层数以及每层神经网络使用的神经元数量</span></p></li><li><p><span>每层神经网络的所使用的的激活函数</span></p></li></ol><p> </p><h3 id='损失函数'><span>损失函数:</span></h3><ol start='' ><li><p><span>交叉熵损失函数 CrossEntropyCost</span></p></li><li><p><span>均方误差损失函数 QuadraticCost</span></p></li></ol><p> </p><h3 id='参数初始化'><span>参数初始化:</span></h3><ol start='' ><li><p><span>普通参数初始化 large_weight_initializer</span></p></li><li><p><span>小参数初始化 default_weight_initializer</span></p></li></ol><p> </p><h3 id='激活函数'><span>激活函数:</span></h3><ol start='' ><li><p><span>sigmoid激活函数及其偏导数</span></p></li><li><p><span>softmax激活函数及其偏导数</span></p></li></ol><p> </p><h3 id='正则化正则化被整合入参数更新部分)'><span>正则化:(正则化被整合入参数更新部分)</span></h3><ol start='' ><li><p><span>L2正则化</span></p></li><li><p><span>L1正则化</span></p></li></ol><p> </p><h3 id='数据集分割'><span>数据集分割:</span></h3><ol start='' ><li><p><span>test_data:50000</span></p></li><li><p><span>validation_data: 10000</span></p></li><li><p><span>test_data: 10000</span></p></li></ol><blockquote><p><span>使用的数据集由参考书作者提供,作者已经将数据集分为三个部分,且对输入x做了归一化处理</span></p><p><span>在excute.py中将evaluation_data = test_data,改为evaludation_data = validation_data就是使用验证集来进行测试</span>
<span>同时也可以用来实现对学习率 </span><mjx-container class="MathJax" jax="SVG" style="position: relative;"><svg xmlns="http://www.w3.org/2000/svg" width="1.319ex" height="1.597ex" role="img" focusable="false" viewBox="0 -694 583 706" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" style="vertical-align: -0.027ex;"><defs><path id="MJX-17-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><use data-c="1D706" xlink:href="#MJX-17-TEX-I-1D706"></use></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math></mjx-assistive-mml></mjx-container><script type="math/tex">\lambda</script><span> 和正则化参数 </span><mjx-container class="MathJax" jax="SVG" style="position: relative;"><svg xmlns="http://www.w3.org/2000/svg" width="1.124ex" height="1.489ex" role="img" focusable="false" viewBox="0 -442 497 658" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" style="vertical-align: -0.489ex;"><defs><path id="MJX-24-TEX-I-1D702" d="M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q156 442 175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336V326Q503 302 439 53Q381 -182 377 -189Q364 -216 332 -216Q319 -216 310 -208T299 -186Q299 -177 358 57L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><use data-c="1D702" xlink:href="#MJX-24-TEX-I-1D702"></use></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>η</mi></math></mjx-assistive-mml></mjx-container><script type="math/tex">\eta</script><span> 等超参数进行调整</span></p></blockquote><p> </p><h3 id='参数更新方式通过调整minibatch的大小即可实现三种算法)'><span>参数更新方式:(通过调整mini_batch的大小即可实现三种算法)</span></h3><ol start='' ><li><p><span>普通梯度下降算法</span></p></li><li><p><span>小批量随机梯度下降算法</span></p></li><li><p><span>随机梯度下降</span></p></li></ol><p> </p><h3 id='绘图'><span>绘图:</span></h3><p><span>使用figure.py绘制模型在训练集和测试集的准确率和损失函数随着epoch迭代的图像。</span></p><p><span>为了保证绘图速度较快,在运行figure.py之后,需要选择训练的样本数量,通常建议1000,这样可以保证训练的速度,快速出图,但是准确率也会下降。</span></p><p><span>当然,也可以通过导入模型参数,直接对模型进行测试。这需要对figure中的部分代码进行调整。</span></p><blockquote><p><span>figure中的cost已经对除以了绘图所用的数据,所以较小</span></p><p><span>损失函数的图像绘制通常会重叠,因为损失函数量级较大,且图像精度较低</span></p></blockquote><p> </p><h3 id='模型参数保存与加载'><span>模型参数保存与加载:</span></h3><p><span>由save 和 load通过对json文件的操作实现模型参数的存储和加载,同样可以使用test_model单独对模型进行测试</span></p><p> </p><blockquote><p><span>以上所有功能,可以通过在execute.py中指定参数,或者在network.py选择性注释掉部分代码实现</span><strong><span>参数更新方式</span></strong><span>等可选功能的切换</span></p></blockquote><p> </p><p> </p><h2 id='运行实例'><span>运行实例</span></h2><h4 id='executepy--关键代码执行后'><span>execute.py 关键代码执行后</span></h4><p><span>(784 * 30 * 10的神经网络,每层分别采用sigmoid, sigmoid, softmax激活函数,使用交叉熵损失函数)</span></p><p><span>(30个epoch,小批量数据集分为10个, 学习率0.5, 正则化参数5.0)</span></p><pre class="md-fences md-end-block md-fences-with-lineno ty-contain-cm modeLoaded" spellcheck="false" lang="python"><div class="CodeMirror cm-s-inner cm-s-null-scroll CodeMirror-wrap" lang="python"><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 9.52282px; left: 35.9921px;"><textarea autocorrect="off" autocapitalize="off" spellcheck="false" tabindex="0" style="position: absolute; bottom: -1em; padding: 0px; width: 1000px; height: 1em; outline: none;"></textarea></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 28px; margin-bottom: 0px; border-right-width: 0px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"><pre><span>xxxxxxxxxx</span></pre><div class="CodeMirror-linenumber CodeMirror-gutter-elt"><div>4</div></div></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation"><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: -27.996px; width: 28px;"></div><div class="CodeMirror-gutter-wrapper CodeMirror-activeline-gutter" style="left: -27.996px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 19px;">1</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">net</span> <span class="cm-operator">=</span> <span class="cm-variable">network</span>.<span class="cm-property">Network</span>([<span class="cm-number">784</span>, <span class="cm-number">30</span>, <span class="cm-number">10</span>], [<span class="cm-string">'sigmoid'</span>, <span class="cm-string">'sigmoid'</span>, <span class="cm-string">'softmax'</span>], <span class="cm-variable">cost</span><span class="cm-operator">=</span><span class="cm-variable">network</span>.<span class="cm-property">CrossEntropyCost</span>)</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -27.996px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">2</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">net</span>.<span class="cm-property">large_weight_initializer</span>() <span class="cm-comment"># 比较不好初始化方法,注释掉的话会默认选择方差为1,均值为0,初始权值的正态分布初始化</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -27.996px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">3</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">net</span>.<span class="cm-property">SGD</span>(<span class="cm-variable">training_data</span>, <span class="cm-number">30</span>, <span class="cm-number">10</span>, <span class="cm-number">0.5</span>, <span class="cm-number">5.0</span>, <span class="cm-variable">evaluation_data</span><span class="cm-operator">=</span><span class="cm-variable">test_data</span>, <span class="cm-variable">monitor_evaluation_accuracy</span><span class="cm-operator">=</span><span class="cm-keyword">True</span>) <span class="cm-comment"># 小批量梯度下降法,包含迭代测试结果的输出</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -27.996px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 19px;">4</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">net</span>.<span class="cm-property">save</span>(<span class="cm-string">'model.json'</span>) <span class="cm-comment"># 保存模型</span></span></pre></div></div></div></div></div></div><div style="position: absolute; height: 0px; width: 1px; border-bottom: 0px solid transparent; top: 115px;"></div><div class="CodeMirror-gutters" style="height: 115px;"><div class="CodeMirror-gutter CodeMirror-linenumbers" style="width: 27px;"></div></div></div></div></pre><p> </p><p><span>输出</span></p><pre class="md-fences md-end-block md-fences-with-lineno ty-contain-cm modeLoaded" spellcheck="false" lang="" style="break-inside: unset;"><div class="CodeMirror cm-s-inner cm-s-null-scroll CodeMirror-wrap" lang=""><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 9.31702px; left: 43.9881px;"><textarea autocorrect="off" autocapitalize="off" spellcheck="false" tabindex="0" style="position: absolute; bottom: -1em; padding: 0px; width: 1000px; height: 1em; outline: none;"></textarea></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 36px; margin-bottom: 0px; border-right-width: 0px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"><pre><span>xxxxxxxxxx</span></pre><div class="CodeMirror-linenumber CodeMirror-gutter-elt"><div>28</div></div></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation" style=""><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: -35.9921px; width: 36px;"></div><div class="CodeMirror-gutter-wrapper CodeMirror-activeline-gutter" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 27px;">1</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">PS C:\Users\85927\Desktop\手写数字识别代码> & D:/anaconda/envs/limu_deepl/python.exe c:/Users/85927/Desktop/手写数字识别代码/execute.py</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">2</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">开始训练,请等待...</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">3</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">4</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">Epoch 0 训练完成</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">5</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">测试集准确率: 0.9144</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">6</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">7</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="" cm-zwsp="">
</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">8</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">9</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">Epoch 1 训练完成</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 27px;">10</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">测试集准确率: 0.9282</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">11</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">12</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="" cm-zwsp="">
</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">13</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">…………(省略部分)</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">14</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="" cm-zwsp="">
</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">15</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">16</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">Epoch 27 训练完成</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">17</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">测试集准确率: 0.9644</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">18</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">19</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="" cm-zwsp="">
</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 27px;">20</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">21</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">Epoch 28 训练完成</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">22</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">测试集准确率: 0.9477</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">23</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">24</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="" cm-zwsp="">
</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">25</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">26</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">Epoch 29 训练完成</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">27</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">测试集准确率: 0.9608</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 27px;">28</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div></div></div></div></div></div><div style="position: absolute; height: 0px; width: 1px; border-bottom: 0px solid transparent; top: 668px;"></div><div class="CodeMirror-gutters" style="height: 668px;"><div class="CodeMirror-gutter CodeMirror-linenumbers" style="width: 35px;"></div></div></div></div></pre><p><span>(模型参数已经保存进入model.json 中)</span></p><h4 id='figurepy在默认参数下执行测试样例后'><span>figure.py在默认参数下执行测试样例后</span></h4><p><span>终端</span></p><pre class="md-fences md-end-block md-fences-with-lineno ty-contain-cm modeLoaded" spellcheck="false" lang="" style="break-inside: unset;"><div class="CodeMirror cm-s-inner cm-s-null-scroll CodeMirror-wrap" lang=""><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 9.31696px; left: 43.9881px;"><textarea autocorrect="off" autocapitalize="off" spellcheck="false" tabindex="0" style="position: absolute; bottom: -1em; padding: 0px; width: 1000px; height: 1em; outline: none;"></textarea></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 36px; margin-bottom: 0px; border-right-width: 0px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation" style=""><div style="position: relative;" class="CodeMirror-activeline"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: -35.9921px; width: 36px;"></div><div class="CodeMirror-gutter-wrapper CodeMirror-activeline-gutter" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 27px;">1</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">PS C:\Users\85927\Desktop\手写数字识别代码> & D:/anaconda/envs/limu_deepl/python.exe c:/Users/85927/Desktop/手写数字识别代码/figure.py</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">2</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">输入保存结果的文件名称(建议result.json): result.json</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">3</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">输入想要运行的epoch数: 20 </span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">4</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">输入训练集的采用的数据规模(建议1000): 1000 </span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">5</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">输入正则化参数,lambda(建议5.0): 5.0</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">6</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">7</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">Epoch 0 训练完成</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">8</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">训练集损失: 1.9727215009866323</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">9</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">训练集准确率: 649 / 1000</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 27px;">10</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">测试集损失: 2.276804397074614</span></pre></div><div class="" style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">11</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">测试集准确率: 5575 / 10000</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">12</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">13</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="" cm-zwsp="">
</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">14</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">15</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">Epoch 1 训练完成</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">16</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">训练集损失: 1.3040527620294522</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">17</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">训练集准确率: 807 / 1000</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">18</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">测试集损失: 1.671468298844578</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">19</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">测试集准确率: 6975 / 10000</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 27px;">20</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">21</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="" cm-zwsp="">
</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">22</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">…………(中间省略)</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">23</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="" cm-zwsp="">
</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">24</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">25</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">Epoch 18 训练完成</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">26</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">训练集损失: 0.20076835410959984</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">27</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">训练集准确率: 990 / 1000</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">28</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">测试集损失: 1.2169281585694622</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">29</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">测试集准确率: 8143 / 10000</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 27px;">30</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">31</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="" cm-zwsp="">
</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">32</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">33</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">Epoch 19 训练完成</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">34</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">训练集损失: 0.19770628582780783</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">35</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">训练集准确率: 991 / 1000</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">36</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">测试集损失: 1.2136953746150674</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">37</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">测试集准确率: 8168 / 10000</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -35.9921px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 27px;">38</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">****************************************</span></pre></div></div></div></div></div></div><div style="position: absolute; height: 0px; width: 1px; border-bottom: 0px solid transparent; top: 899px;"></div><div class="CodeMirror-gutters" style="height: 899px;"><div class="CodeMirror-gutter CodeMirror-linenumbers" style="width: 35px;"></div></div></div></div></pre><center class="half">
<img src="./assets/Figure_1.png" width="450"/>
<img src="./assets/Figure_2.png" width="450"/>
</center><p> </p><h2 id='实验内容'><span>实验内容</span></h2><p><span>A1: 基于全链接网络的手写数字体识别 (15 points)</span></p><p><span>• 本题目考察如何设计并实现一个简单的图像分类器。设置本题目的目的如下:</span></p><p> </p><ul><li><p><span>理解基本的图像识别流程及数据驱动的方法(训练、预测等阶段)</span></p></li><li><p><span>答:见代码,已完成</span></p></li></ul><p> </p><ul><li><p><span>理解训练集/验证集/测试集的数据划分,以及如何使用验证数据调整模型的超参数</span></p></li><li><p><span>答:见代码以及上述对validation_data的作用描述</span></p></li></ul><p> </p><ul><li><p><span>实现一个</span><strong><span>全连接神经网络</span></strong><span>分类器</span></p></li><li><p><span>答:见代码,已实现</span></p><p> </p></li><li><p><span>理解不同的分类器之间的区别,以及使用不同的更新方法优化神经网络</span></p></li><li><p><span>答:在神经网络中,常用的分类器包括 softmax 分类器和二元分类器。Softmax 分类器适用于多类别分类问题,它会将神经网络的输出转化为概率分布,使用sigmoid作为输出层的神经元同样可行,但是效果不如softmax。</span></p><p><span>常用的优化算法包括梯度下降法、随机梯度下降法(SGD)、小批量梯度下降法等。随机梯度下降的优点是计算效率高。缺点是,收敛性相对不稳定由于每次迭代只考虑一个样本,可能会引入一些随机性,使得收敛过程相对不稳定。可能会陷入局部最优解,而不是全局最优解。而小批量梯度下降算法在保留了一定随机性的同时,可以保证参数更新是向着全局最优的方向进行,同时,还可以减轻计算设备的开销。</span></p><p><span>学习率是梯度下降算法中一个重要的超参数,它控制了参数更新的步幅。合适的学习率能够加速收敛,但过大的学习率可能会导致震荡甚至发散。正则化方法如 L1 正则化和 L2 正则化可以用于防止过拟合,它们通过对参数进行惩罚来降低模型的复杂度。而正则化参数lambda则是对正则化的一种约束。</span></p><p> </p></li></ul><p> </p><p><strong><span>• 附加题:</span></strong><span> </span></p><p><span> 尝试使用不同的损失函数和正则化方法,观察并分析其对实验结果的影响 </span></p><p><span>答:</span></p><h4 id='两种损失函数的对比\nλ\n--50\nη\n--05)'><span>两种损失函数的对比(</span><mjx-container class="MathJax" jax="SVG" style="position: relative;"><svg xmlns="http://www.w3.org/2000/svg" width="1.319ex" height="1.597ex" role="img" focusable="false" viewBox="0 -694 583 706" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" style="vertical-align: -0.027ex;"><defs><path id="MJX-17-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><use data-c="1D706" xlink:href="#MJX-17-TEX-I-1D706"></use></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math></mjx-assistive-mml></mjx-container><script type="math/tex">\lambda</script><span> = 5.0,</span><mjx-container class="MathJax" jax="SVG" style="position: relative;"><svg xmlns="http://www.w3.org/2000/svg" width="1.124ex" height="1.489ex" role="img" focusable="false" viewBox="0 -442 497 658" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" style="vertical-align: -0.489ex;"><defs><path id="MJX-24-TEX-I-1D702" d="M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q156 442 175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336V326Q503 302 439 53Q381 -182 377 -189Q364 -216 332 -216Q319 -216 310 -208T299 -186Q299 -177 358 57L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><use data-c="1D702" xlink:href="#MJX-24-TEX-I-1D702"></use></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>η</mi></math></mjx-assistive-mml></mjx-container><script type="math/tex">\eta</script><span> = 0.5)</span></h4><p><strong><span>1.</span></strong><span>采用784 * 30 * 10的神经网络,每层分别采用sigmoid, sigmoid, softmax激活函数,</span><strong><span>使用交叉熵损失函数,L2正则化</span></strong></p><p><span>结果如下</span></p><center class="half">
<img src="./assets/Figure_3.png" width="450"/>
<img src="./assets/Figure_4.png" width="450"/>
</center><p> </p><p> </p><p><strong><span>2.</span></strong><span>网络同上,</span><strong><span>使用均方误差损失函数,L2正则化</span></strong></p><p><span>结果如下</span></p><center class="half">
<img src="./assets/Figure_5.png" width="450"/>
<img src="./assets/Figure_6.png" width="450"/>
</center><p><span>通过对比上面面两种不同损失函数的对模型训练效果的对比,发现交叉熵损失函数,cost下降更快,模型准确率更高,且训练速度更快。这样的效果是基于sigmoid和交叉熵损失函数在数学原理上的相适性更好。但是通过图像也可以看出,交叉熵函数的不稳定行大于均方误差函数。</span></p><p> </p><h4 id='不同正则化方式的对比\nλ\n--50\nη\n--05)'><span>不同正则化方式的对比(</span><mjx-container class="MathJax" jax="SVG" style="position: relative;"><svg xmlns="http://www.w3.org/2000/svg" width="1.319ex" height="1.597ex" role="img" focusable="false" viewBox="0 -694 583 706" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" style="vertical-align: -0.027ex;"><defs><path id="MJX-17-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><use data-c="1D706" xlink:href="#MJX-17-TEX-I-1D706"></use></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math></mjx-assistive-mml></mjx-container><script type="math/tex">\lambda</script><span> = 5.0,</span><mjx-container class="MathJax" jax="SVG" style="position: relative;"><svg xmlns="http://www.w3.org/2000/svg" width="1.124ex" height="1.489ex" role="img" focusable="false" viewBox="0 -442 497 658" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" style="vertical-align: -0.489ex;"><defs><path id="MJX-24-TEX-I-1D702" d="M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q156 442 175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336V326Q503 302 439 53Q381 -182 377 -189Q364 -216 332 -216Q319 -216 310 -208T299 -186Q299 -177 358 57L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><use data-c="1D702" xlink:href="#MJX-24-TEX-I-1D702"></use></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>η</mi></math></mjx-assistive-mml></mjx-container><script type="math/tex">\eta</script><span> = 0.5)</span></h4><p><strong><span>1.</span></strong><span>采用784 * 30 * 10的神经网络,每层分别采用sigmoid, sigmoid, softmax激活函数,</span><strong><span>使用交叉熵损失函数,L2正则化</span></strong></p><p><span>结果如下</span></p><center class="half">
<img src="./assets/Figure_3.png" width="450"/>
<img src="./assets/Figure_4.png" width="450"/>
</center><p> </p><p><strong><span>2.</span></strong><span>采用784 * 30 * 10的神经网络,每层分别采用sigmoid, sigmoid, softmax激活函数,</span><strong><span>使用交叉熵损失函数,L1正则化</span></strong></p><p><span>结果如下</span></p><center class="half">
<img src="./assets/Figure_7.png" width="450"/>
<img src="./assets/Figure_8.png" width="450"/>
</center><p><strong><span>3.</span></strong><span>采用784 * 30 * 10的神经网络,每层分别采用sigmoid, sigmoid, softmax激活函数,</span><strong><span>使用交叉熵损失函数,无正则化</span></strong></p><p><span>结果如下</span></p><center class="half">
<img src="./assets/Figure_9.png" width="450"/>
<img src="./assets/Figure_10.png" width="450"/>
</center><p><strong><span>对比上列三个实验结果,发现,添加了正则化项的模型,过拟合程度显著降低,且准确率有所提高。</span></strong></p><p> </p><p> </p><p><span> 尝试使用不同的优化算法,观察并分析其对训练过程和实验结果的影响 (如batch GD, online GD, mini-batch GD, SGD, 或其它的优化算法,如Momentum, Adsgrad, Adam, Admax) (+5 points)</span></p><p><strong><span>1.</span></strong><span> 784 * 30 * 10神经网络(激活函数同上),</span><strong><span>使用交叉熵损失函数,L2正则化,小批量随机梯度下降(batch_size = 10), epoch = 30</span></strong></p><p><span>结果如下</span></p><center class="half">
<img src="./assets/Figure_11.png" width="450"/>
<img src="./assets/Figure_12.png" width="450"/>
</center><p><strong><span>2.</span></strong><span>网络同上,</span><strong><span>使用交叉熵损失函数,L2正则化,普通梯度下降(batch_size = 50000),epoch = 100(补偿性增大)</span></strong></p><p><span>结果如下</span></p><center class="half">
<img src="./assets/Figure_13.png" width="450"/>
<img src="./assets/Figure_14.png" width="450"/>
</center><p> </p><p><strong><span>3.</span></strong><span> 网络同上,</span><strong><span>使用交叉熵损失函数,L2正则化,随机梯度下降(batch_size = 1 ), epoch = 30</span></strong></p><p><span>结果如下</span></p><center class="half">
<img src="./assets/Figure_17.png" width="450"/>
<img src="./assets/Figure_18.png" width="450"/>
</center><p><span>根据上述实验结果,发现普通梯度下降算法虽然可以正常更新参数,逐步提高模型准确率,但是每个epoch只更新参数一次,速度非常慢。随机梯度下降,因为每个样例都会导致参数更新,所以随机性会更强,不易控制朝着最优解的方向下降。小批量随机梯度下降法,batch = 10,每个epoch更新5000次参数,在保证了训练速度的同时,提高了模型的稳定性,并且训练效果优于其余两种方法。</span></p><p> </p><p> </p><h2 id='参考文章书籍代码'><span>参考文章、书籍、代码</span></h2><ol start='' ><li><p><a href='https://www.cnblogs.com/jsfantasy/p/12177275.html'><span>神经网络之反向传播算法(BP)公式推导(超详细 jsfantasy - 博客园 </span></a></p></li><li><p><a href='http://neuralnetworksanddeeplearning.com/index.html'><span>Neural networks and deep learning</span></a></p></li><li><p><a href='https://github.com/mnielsen/neural-networks-and-deep-learning'><span>mnielsen/neural-networks-and-deep-learning</span></a></p></li></ol><p> </p><h2 id='辅助工具'><span>辅助工具</span></h2><ol start='' ><li><p><span>Github copilot :VScode插件,辅助编写代码</span></p></li><li><p><span>gpt_academic :通过API部署的本地自用GPT项目,解释上述书籍和仓库中较为难以理解的代码</span></p></li></ol><p> </p><h2 id='声明'><span>声明</span></h2><p><strong><span>所有代码均为本人逐行实现,代码机制、公式以及涉及到的数学原理,均理解透彻</span></strong></p></div></div>
</body>
</html>