-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcmsc351.tex
2626 lines (2151 loc) · 136 KB
/
cmsc351.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% ██████ ████ ████ ████████ ██████ ████ ██████ ██
% ██░░░░██░██░██ ██░██ ██░░░░░░ ██░░░░██ █░░░ █░█░░░░ ███
% ██ ░░ ░██░░██ ██ ░██░██ ██ ░░ ░ ░█░█████ ░░██
%░██ ░██ ░░███ ░██░█████████░██ █████ ███ ░░░░░ █ ░██
%░██ ░██ ░░█ ░██░░░░░░░░██░██ ░░░░░ ░░░ █ ░█ ░██
%░░██ ██░██ ░ ░██ ░██░░██ ██ █ ░█ █ ░█ ░██
% ░░██████ ░██ ░██ ████████ ░░██████ ░ ████ ░ ████ ████
% ░░░░░░ ░░ ░░ ░░░░░░░░ ░░░░░░ ░░░░ ░░░░ ░░░░
% ██ ██ ██ ██ ██
% ████ ░██ █████ ░░ ░██ ░██
% ██░░██ ░██ ██░░░██ ██████ ██████ ██ ██████░██ ██████████ ██████
% ██ ░░██ ░██░██ ░██ ██░░░░██░░██░░█░██░░░██░ ░██████ ░░██░░██░░██ ██░░░░
% ██████████ ░██░░██████░██ ░██ ░██ ░ ░██ ░██ ░██░░░██ ░██ ░██ ░██░░█████
%░██░░░░░░██ ░██ ░░░░░██░██ ░██ ░██ ░██ ░██ ░██ ░██ ░██ ░██ ░██ ░░░░░██
%░██ ░██ ███ █████ ░░██████ ░███ ░██ ░░██ ░██ ░██ ███ ░██ ░██ ██████
%░░ ░░ ░░░ ░░░░░ ░░░░░░ ░░░ ░░ ░░ ░░ ░░ ░░░ ░░ ░░ ░░░░░░
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
\documentclass[english, 10pt]{article}
\usepackage{notes}
\usepackage{inconsolata}
\usepackage[shellescape]{gmp}
\allowdisplaybreaks%
\newcommand{\thiscoursecode}{CMSC 351}
\newcommand{\thiscoursename}{Algorithms}
\newcommand{\thisprof}{Dr.\ Clyde Kruskal}
\newcommand{\me}{Alex Reustle}
\newcommand{\thisterm}{Fall 2017}
\newcommand{\website}{http://cs.umd.edu/class/fall2017/cmsc351/}%chktex 8
\usepackage{ifpdf}
\ifpdf%
\DeclareGraphicsRule{*}{mps}{*}{}
\fi
% \listfiles
% \VerbEnvir{align tikzpicture algorithm}
%%%Headers
\chead{351-Algorithms}
\lhead{\thisterm}
%%%%% TITLE %%%%%
\graphicspath{{../}}
\newcommand{\notefront}{%
\pagenumbering{arabic}
\begin{center}
{\small}
\textbf{\Huge{\noun{\thiscoursecode}}}
{\Huge \par}
{\Large{\noun{\thiscoursename}}}\\
\vspace{0.1in}
\vspace{0in}\includegraphics[scale=0.3]{umd_cs.jpg} \\
\vspace{0.1in}{\noun\me} \\
{\noun\thisprof} \ $\bullet$ \ {\noun\thisterm} \ $\bullet$ \ {\noun{University of Maryland}} \\
{\ttfamily \url{\website}} \\
\end{center}
}
\tikzstyle{class}=[
rectangle,
draw=black,
text centered,
anchor=north,
text=black,
text width=2cm,
shading=axis,
bottom color={rgb:red,222;green,222;blue,222},
top color=white,shading angle=45]
% ██████ ██
% ░█░░░░██ █████ ░░
% ░█ ░██ █████ ██░░░██ ██ ███████
% ░██████ ██░░░██░██ ░██░██░░██░░░██
% ░█░░░░ ██░███████░░██████░██ ░██ ░██
% ░█ ░██░██░░░░ ░░░░░██░██ ░██ ░██
% ░███████ ░░██████ █████ ░██ ███ ░██
% ░░░░░░░ ░░░░░░ ░░░░░ ░░ ░░░ ░░
\begin{document}
% \renewcommand\familydefault{\sfdefault}
% \sffamily
% Notes front
\notefront%
% Table of Contents and List of Figures
\tocandfigures%
\section{Maximum Subarray Problem}
Given a sequence of integers, find the largest collection which is a sum of adjacent values. Sequence is in an array with indices from 1 to n.
\[
3~-5~\underbrace{4~3~-6~4~8}_{Sum = 13}~-5~3~-7~2~1 \\
\]
\subsection{Brute Force solution}
Brute force solution: try every possible sum. (I'd guess it's $n^3$) Sum variable M set to zero. We will allow empty sums (no elements, sum = 0).
% \begin{wrapfigure}{R}{0.3\textwidth}
% \centering
\begin{algorithm}[H]
$M\gets0$\;
\For{i=1 to n}{\
\For{j=i to n}{\
$S\gets0$\;
\For{k=i to j}{\
$S = S + A[k]$\;
$M = \max(M,S)$\;
}
}
\caption{Matrix Subarray Brute Force}
}
\end{algorithm}
% \end{wrapfigure}
Insight: Loops in programs are like summation in Mathematics.%
(for i=1) to n == $\sum_{i=1}^{n}$
Nested loops are nested summations.
$\sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=i}^{j} 1$
Simplify summation using summation algebra from the inside out.
$\sum_{i=1}^{n} \sum_{j=i}^{n} j-i+1 $
Tangent: since j is the variable, i and 1 are constants. So it can be separated into two sums.
\subsection{Analysis of the Algorithm}
Actual progress: Change a variable to manage sum. Like integrals in calculus. Every technique in calculus for integrations are matched by similar techniques in summations.
Change of variable by example. See appendix for examples of summation properties.
\begin{align*}
\sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=i}^{j} 1 &= \sum_{i=1}^{n} \sum_{j=i}^{n} j-i+1 & \text{By adding 1 $j-i$ times, and fenceposting} \\
&= \sum_{i=1}^{n} \sum_{j=1}^{n-i+1} j & \text{By change of variable Method} \\
&= \s{i=1}{n} \f{(n-i+1)(n-i+2)}{2} & \text{Gausses sum} \\
&= \f{1}{2}\times \s{i=1}{n} (n-i+1)(n-i+2) & \text{Expanding is error prone. Change variable instead} \\
&= \f{1}{2}\times \s{n-i+1=1}{n} i(i+1) & \text{substitute i=n-i+1} \\
&= \f{1}{2}\times \s{i=1}{n} i(i+1) & \text{simplify bounds} \\
&= \f{1}{2}\times \frac{n(n+1)(n+2)}{3} & \text{magic.} \\
&= \frac{n(n+1)(n+2)}{6} \\
\end{align*}
This first method is $\Theta{\left(n^3\right)}$.
\subsection{Methods to improve integer list summation algorithm.}
Remember previous sums, do not recalculate known data.
% \begin{wrapfigure}{L}{0.3\textwidth}
\begin{algorithm}[H]
$M\gets0$\;
\For{i=1 to n}{\
$S\gets0$\;
\For{j = i to n}{\
$S = S+A[j]$\;
$M = \max(M,S)$\
}
}
\caption{$n^2$ Subarray }
\end{algorithm}
% \end{wrapfigure}
$$
\sum_{i=1}^{n} \sum_{j=i}^{n} 1 = \sum_{i=1}^n n-i+1 \\
= \sum_{i=1}^{n} i = \frac{n(n+1)}{2}
$$
This new method is $\Theta{\left(n^2\right)} $.
% Further improvements.
Loosely speaking the maximum sum is just the previous maximum sum, plus the current value.
% $$
% S[i] = S[i-1]+A[i] \\
% \max( S[i-1]+A[i], 0)
% $$
% \begin{wrapfigure}{R}{0.3\textwidth}
\begin{algorithm}[H]
$M \gets 0,S \gets 0$\;
\For{i = 1 to n}{\
$S \gets \max(S+A[i], 0)$\;
$M = \max(M,S)$\;
}
\caption{Linear Subarray }
\end{algorithm}
% \end{wrapfigure}
The third method is $\Theta{\left(n\right)} $.\newline
Correctness of the algorithm stems from proof by induction on $S = \max(S+A[i], 0)$. This is the Loop Invariant.
$$
\sum_{i=1}^n 1 = n \\
% \Theta{(n)}
$$
\section{Timing analysis}
\textbf{Lower Bound}
No algorithm is Faster than this boundary condition, the lower bound time.
Best Case scenario, very hard to prove in the general case.
\textbf{Upper Bound}
Some Algorithm can obtain upper bound time.
Worst case Scenario.
\subsection{Classes of algorithms}
\subsubsection{$\Theta(n^2)$}
Bubble sort \\
Insertion Sort \\
Selection Sort \\
\subsubsection{$\Theta(n\log(n))$}
Merge Sort \\
Heap Sort \\
Quick Sort \\
\subsubsection{Others}
Radix Sort
%% ██████ ██ ██ ██ ████████ ██
% ░█░░░░██ ░██ ░██ ░██ ██░░░░░░ ░██
% ░█ ░██ ██ ██░██ ░██ ░██ █████ ░██ ██████ ██████ ██████
% ░██████ ░██ ░██░██████ ░██████ ░██ ██░░░██ ░█████████ ██░░░░██░░██░░█░░░██░
% ░█░░░░ ██░██ ░██░██░░░██░██░░░██ ░██░███████ ░░░░░░░░██░██ ░██ ░██ ░ ░██
% ░█ ░██░██ ░██░██ ░██░██ ░██ ░██░██░░░░ ░██░██ ░██ ░██ ░██
% ░███████ ░░██████░██████ ░██████ ███░░██████ ████████ ░░██████ ░███ ░░██
% ░░░░░░░ ░░░░░░ ░░░░░ ░░░░░ ░░░ ░░░░░░ ░░░░░░░░ ░░░░░░ ░░░ ░░
\section{Bubble Sort Analysis}
\begin{algorithm}
\For{i = n downto 2}{%
\For{j = 1 to i-1}{%
\If{$A[j] > A[j+1]$}{%
swap (A[j],A[j+1])\;
}
}
\caption{Bubble Sort}
}
\end{algorithm}
Major Growth Elements of Bubble sort will be Comparisons and Exchanges (swaps).\\
Best case number of comparisons require you to view every element unconditionally. \\
\begin{align*}
\sum_{i=2}^n \sum_{j=1}^{i-1} 1 &= \sum_{i=2}^{n} i-1 \\
&= \sum_{i=1}^{n-1} (i+1) -1 \\
&= \sum_{i=1}^{n-1} i \\
&= \f{(n-1)n}{2} = \binom{n}{2}& \text{Equivalent to n choose 2}
\end{align*}
Comparisons will always occur, regardless of state of list. \\
Best Case Exchanges occur when the list is sorted. Zero exchanges. \\
Worst Case Exchanges occur when the list is reverse sorted. Same number of exchanges as comparisons. \\
\defn[Random] Each permutation (ordering) of the list is equally likely.
Rotations of list permutations are equally likely to be in any position, but are not random because they ignore other possible permutations.\\
\subsection{Average Case Analysis}
Count Transpositions. Two elements that are out of order related to each other. See appendix for details about transpositions. \\
In the best case there are no transpositions. \\
In the worst case there are n choose 2 transpositions. Every element is out of order with the number of elements below it.
So the number of transpositions is the number of unique pairs. Which is n choose 2 pairs. \\
In a randomized sample the permutations are equally likely to be out of order greater or lesser,
so the number of average case exchanges will be half the number of comparisons. $\f{n(n-1)}{4}$.
% ██ ██ ██ ████████ ██
% ░██ ░██ ░░ ██░░░░░░ ░██
% ░██ ███████ ██████ █████ ██████ ██████ ██ ██████ ███████ ░██ ██████ ██████ ██████
% ░██░░██░░░██ ██░░░░ ██░░░██░░██░░█░░░██░ ░██ ██░░░░██░░██░░░██ ░█████████ ██░░░░██░░██░░█░░░██░
% ░██ ░██ ░██░░█████ ░███████ ░██ ░ ░██ ░██░██ ░██ ░██ ░██ ░░░░░░░░██░██ ░██ ░██ ░ ░██
% ░██ ░██ ░██ ░░░░░██░██░░░░ ░██ ░██ ░██░██ ░██ ░██ ░██ ░██░██ ░██ ░██ ░██
% ░██ ███ ░██ ██████ ░░██████░███ ░░██ ░██░░██████ ███ ░██ ████████ ░░██████ ░███ ░░██
% ░░ ░░░ ░░ ░░░░░░ ░░░░░░ ░░░ ░░ ░░ ░░░░░░ ░░░ ░░ ░░░░░░░░ ░░░░░░ ░░░ ░░
\section{Insertion Sort with Sentinel}
Every 0 to [i-1] index during the loop will be sorted. \\
ith term is stored in tmp. Values in the sorted subarray which are larger than the tmp value are brought forward individually until tmp > A[j]. A sentinel $-\infty$ is used at $A[0]$, so values don't drop off array. \\
\begin{algorithm}
$A[0] \gets -\infty$\;
\For{i = 2 to n}{%
$t \gets A[i]$\;
$j \gets i-1$\;
\While{$A[j] \ge t$}{%
$A[j+1] \gets A[j]$\;
$j \gets j-1$\;
}
$A[j+1] \gets t$\;
}
\caption{Insertion Sort with Sentinel}
\end{algorithm}
\subsection{Analysing Number of Comparisons}
\subsubsection{Best Case Comparisons}
In the case where the array is already correctly sorted, there will be only 1 comparison for each iteration of the other for loop.
It will always evaluate false.
So the number of best case comparisons is just the number of for loop iterations.
\begin{align*}
\s{i=2}{n} 1 &= (n-2)+1 & \text{Already sorted} \\
&= n-1
\end{align*}
\subsubsection{Worst Case Comparisons}
In the worst case the array is reverse sorted, and every element must be moved.
The while loop always decrements j to zero to compare against the sentinel value.
\begin{align*}
\sum_{i=2}^n i &= \left(\sum_{i=1}^{n}i \right)-1 & \text{Reverse Sorted} \\
&= \f{n(n+1)}{2} -1 & \text{must remove i=1} \\
&= \f{(n+2)(n-1)}{2}
\end{align*}
\subsubsection{Average Case Comparisons}
In the average case we must determine the probability that a given element will move.
So for evaluation we want the expected value over the set $\sum_{x \in X} P(x)\cdot V(x) $.
Starting at location i, go until reach location j-1.
Probability (P) that 1 element (A[i]) will end up in any location in the subarray is $\f{1}{i}$. Value (V) is number of moves which is (i-j+1).
\begin{align*}
\s{i=2}{n} \s{j=1}{i} \frac{1}{i} \cdot (i-j+1) &= \s{i=2}{n} \frac{1}{i} \s{j=1}{i} (i-j+1) & \text{Pull out 1/i} \\
&= \s{i=2}{n}\frac{1}{i}\s{j=1}{i} j \\
&= \s{i=2}{n}\frac{1}{i}\cdot\frac{i(i+1)}{2} \\
&= \s{i=2}{n}\frac{(i+1)}{2} \\
&= \frac{1}{2}\left[ \s{i=2}{n}i+1\right] \\
&= \frac{1}{2}\left[ \s{i=2}{n}i+ \s{i=2}{n}1\right] \\
&= \frac{1}{2}\left[ \s{i=1}{n}i -1 + (n-1) \right] \\
&= \frac{1}{2}\left[ \f{(n)(n+1)}{2} -1 + \frac{2(n-1)}{2} \right] \\
&= \frac{1}{2}\left[ \f{(n^2+n-2)}{2} + \frac{2n-2}{2} \right] \\
&= \f{(n^2+3n-4)}{4} \\
&= \f{(n+4) (n-1)}{4}
\end{align*}
\subsection{Analyzing Exchanges}
\subsubsection{Best Case Exchanges}
Best case number of moves = $2n-1$. There is 1 move in in the $-\infty$
assignment at the top, then in the for loop there are 2 moves per iteration,
moving A[i] into t, and moving it back into the same spot. $1 + 2(n-1) = 2n
-1$.
\subsubsection{Worst Case Exchanges}
Worst case number of moves is 2 for each iteration of outer loop plus worst
case number of comparisons, minus the time when the comparison is false at the
end, of the inner loop, plus 1 for the top assignment. $2(n-1) + COMP - (n-1)
+1 $.
Note the short cut, at each iteration we're doing one more move than
comparison. So just easily take the value already derived for Worst case
comparisons, and add the number of loop iterations, plus 1 for the sentinel
assignment. $$\frac{(n+2)(n-1)}{2} +n $$
\subsubsection{Average Case Exchanges}
In the average case, whenever there's a comparison, there will always be a
move, except the 1 time per iteration it evaluates false. So the analysis
method is the same as for the worse case. Since we know the number. $$\f{(n+4)
(n-1)}{4} + n$$
\begin{rem}
An important trick is to recognize that the moves are related to the
comparisons 1 to 1 and that there will be 1 time when the comparison evaluates
false each iteration, so you subtract that from the final analysis.
\end{rem}
% ██ ██ ██ ████████ ██ ██
% ░██ ░██ ░░ ██░░░░░░ ░██ ██
% ░██ ███████ ██████ █████ ██████ ██████ ██ ██████ ███████ ░██ ██████ ██████ ██████ ███ ██ ██ ██████
% ░██░░██░░░██ ██░░░░ ██░░░██░░██░░█░░░██░ ░██ ██░░░░██░░██░░░██ ░█████████ ██░░░░██░░██░░█░░░██░ ░░██ █ ░██ ██ ██░░░░██
% ░██ ░██ ░██░░█████ ░███████ ░██ ░ ░██ ░██░██ ░██ ░██ ░██ ░░░░░░░░██░██ ░██ ░██ ░ ░██ ░██ ███░██ ██ ░██ ░██
% ░██ ░██ ░██ ░░░░░██░██░░░░ ░██ ░██ ░██░██ ░██ ░██ ░██ ░██░██ ░██ ░██ ░██ ░████░████ ██ ░██ ░██
% ░██ ███ ░██ ██████ ░░██████░███ ░░██ ░██░░██████ ███ ░██ ████████ ░░██████ ░███ ░░██ ███░ ░░░██ ██ ░░██████
% ░░ ░░░ ░░ ░░░░░░ ░░░░░░ ░░░ ░░ ░░ ░░░░░░ ░░░ ░░ ░░░░░░░░ ░░░░░░ ░░░ ░░ ░░░ ░░░ ░░ ░░░░░░
% ████████ ██ ██ ██
% ██░░░░░░ ░██ ░░ ░██
% ░██ █████ ███████ ██████ ██ ███████ █████ ░██
% ░█████████ ██░░░██░░██░░░██░░░██░ ░██░░██░░░██ ██░░░██ ░██
% ░░░░░░░░██░███████ ░██ ░██ ░██ ░██ ░██ ░██░███████ ░██
% ░██░██░░░░ ░██ ░██ ░██ ░██ ░██ ░██░██░░░░ ░██
% ████████ ░░██████ ███ ░██ ░░██ ░██ ███ ░██░░██████ ███
% ░░░░░░░░ ░░░░░░ ░░░ ░░ ░░ ░░ ░░░ ░░ ░░░░░░ ░░░
\section{Insertion Sort without Sentinel}
Add another comparison in the algorithm so the A[0] term is unnecessary, by checking that you haven't gone past i=1.
\begin{algorithm}[H]
\For{i=2 to n}{%
$t\gets A[i]$\;
$j \gets i-1$\;
\While{$j > 0 \wedge A[j] > t$}{%
$A[j+1]\gets A[j]$\;
$j \gets j-1$\;
}
$A[j+1]\gets t$\;
}
\caption{Insertion Sort w/o Sentinel}
\end{algorithm}
A note about comparisons. We don't count index value comparisons, because index values can easily be stored in registers and won't have the same
cost to check as array value comparisons.
\subsection{Best Case Comparisons}
In the best case, the array is already sorted, so there will just be 1 comparison per iteration of the outer loop. $\s{i=2}{n} 1 = (n-2) + 1 = n-1$
\subsection{Worst Case Comparisons}
In the worst case, the array is reverse sorted, and every ith iteration of the loop must compare against all previous $(i-1)$ elements.
\begin{align*}
\s{i=2}{n}\s{j=1}{i-1}1 &= \s{i=2}{n} (i-1) \\
&= \s{i=2}{n} i - \s{i=2}{n} 1 \\
&= \f{n(n+1)}{2} -1 -(n-1) \\
&= \f{n(n+1)}{2} -n \\
&= \f{n^2 + n}{2} -\frac{2n}{2} \\
&= \f{n^2 - n}{2} \\
&= \f{n(n-1)}{2} \\
\end{align*}
% $$\frac{n(n-1)}{2}$$
\subsection{Average Case Comparisons}
\begin{rem}
HARMONIC SERIES and brick problem.
How far out can you stack bricks on top of one another? Arbitrarily far out (but not infinitely far out)
$$H_n = \s{i=1}{n}\frac{1}{i} = 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots \approx \ln{n}+1$$
$$H_n -1 = \s{i=2}{n}\frac{1}{i} = \frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots \approx \ln{n}$$
Harmonic Series come up again and again because of the idea that something has a $\frac{1}{i}$ chance of happening in an iteration.
\end{rem}
What are we saving when we don't have a sentinel? In the event that the ith element is the smallest element in the A[1..i-1] sub-array, we will descend all
the way to the 1st index of the list. If that happens, we won't have the 1 extra step of comparing against the sentinel. So only when the ith element is
the smallest seen thus far do we save 1 step.
Probability that current ith element is smallest in sub array is $\frac{1}{i}$. The value when that occurs is 1.
Thus over all n elements of the array, on average the sentinel would have cost us $\s{i=2}{n}\frac{1}{i} = H_n -1$ comparisons.
So average case comparisons without sentinel is average case with sentinel minus average cost of sentinel.
$\frac{(n-1)(n+4)}{4}-(H_n -1) \approx \frac{(n-1)(n+4)}{4}-\ln{n}$.
\subsection{Exchanges}
Removing the sentinel from insertion sort adds no new exchanges, nor does it alter when a change might have been done already.
Therefore, the best, worst and average cases are all the same as insertion sort with sentinel.
% ████████ ██ ██ ██ ████████ ██
% ██░░░░░░ ░██ ░██ ░░ ██░░░░░░ ░██
% ░██ █████ ░██ █████ █████ ██████ ██ ██████ ███████ ░██ ██████ ██████ ██████
% ░█████████ ██░░░██ ░██ ██░░░██ ██░░░██░░░██░ ░██ ██░░░░██░░██░░░██ ░█████████ ██░░░░██░░██░░█░░░██░
% ░░░░░░░░██░███████ ░██░███████░██ ░░ ░██ ░██░██ ░██ ░██ ░██ ░░░░░░░░██░██ ░██ ░██ ░ ░██
% ░██░██░░░░ ░██░██░░░░ ░██ ██ ░██ ░██░██ ░██ ░██ ░██ ░██░██ ░██ ░██ ░██
% ████████ ░░██████ ███░░██████░░█████ ░░██ ░██░░██████ ███ ░██ ████████ ░░██████ ░███ ░░██
% ░░░░░░░░ ░░░░░░ ░░░ ░░░░░░ ░░░░░ ░░ ░░ ░░░░░░ ░░░ ░░ ░░░░░░░░ ░░░░░░ ░░░ ░░
\section{Selection Sort}
Summary: Find biggest element, put at bottom of list, recurse for sub array.
\begin{algorithm}[H]
\For{i=n downto 2}{%
$k\gets 1$\;
\For{j=2 to i}{%
\If{$A[j] > A[k]$}{%
$k \gets j$\;
}
}
swap (A[k], A[i])\;
}
\caption{Selection Sort}
\end{algorithm}
\subsection{Comparisons}
The comparison is always run, so the comparison value should be the same for all cases.
\begin{align*}
\s{i=2}{n}\s{j=2}{i}1 &= \s{i=2}{n} (i-1) \\
& = \frac{(n-1)n}{2}\\
\end{align*}
\subsection{Exchanges}
Exchanges don't occur inside the conditional, so exchanges number is simply n-1.
How many times do we exchange a number with itself? How many times does i=k?
$\sum 1/i = H_n$
% ████ ████ ████████ ██
% ░██░██ ██░██ █████ ██░░░░░░ ░██
% ░██░░██ ██ ░██ █████ ██████ ██░░░██ █████ ░██ ██████ ██████ ██████
% ░██ ░░███ ░██ ██░░░██░░██░░█░██ ░██ ██░░░██ ░█████████ ██░░░░██░░██░░█░░░██░
% ░██ ░░█ ░██░███████ ░██ ░ ░░██████░███████ ░░░░░░░░██░██ ░██ ░██ ░ ░██
% ░██ ░ ░██░██░░░░ ░██ ░░░░░██░██░░░░ ░██░██ ░██ ░██ ░██
% ░██ ░██░░██████░███ █████ ░░██████ ████████ ░░██████ ░███ ░░██
% ░░ ░░ ░░░░░░ ░░░ ░░░░░ ░░░░░░ ░░░░░░░░ ░░░░░░ ░░░ ░░
\section{Merge Sort}
Divide and Conquer. Recursively split array in half down to 1 element, then merge sorted sublists.
First call of Mergesort is (A,1,n) \\
\begin{algorithm}[H]
MERGESORT (A,p,r)\;
//p and r are indices in array defining sub array.\;
\If{p<r}{%
$q \gets \lfloor{\frac{p+r}{2}}\rfloor$\;
MERGESORT (A,p,q)\;
MERGESORT (A,q+1,r)\;
MERGE (A, (p,q), (q+1,r))\;
\caption{Merge Sort}
}
\end{algorithm}
\subsection{Merge Comparison analysis}
\subsubsection{Equal length arrays}
Merge algorithm is linear over 2 sorted lists of same size (n). Total number of comparisons in the worst case during merge is $2n-1$, best case comparisons is n, where
1 array is strictly greater than the other.
Can't do better than $2n-1$ in worst case, because worst case situation is 2 lists with interleaved values. In this case the granularity of difference is on the scale of 1 value. So you must check every value to ensure against that. The last remaining value of 2 lists is not compared, which leads to 2n-1.
This gives us very tight bounds and lets us know everything there is to know about merging.
\subsubsection{Different length arrays}
Arrays of size m and n where $m\le n$ Worst case comparisons = $m+n-1$
When $m<<n$ you can get close to $\log n$ running time using binary search. But when m is close to n you are much closer to the $m+n-1$ worst case.
\subsection{Mergesort Comparison Analysis}
\textbf{Exact Number of Comparisons During a merge}
$$ (q-p+1) + (r-(q+1)+1) -1 = (r-p)\; \text{comparisons} $$
starting at index p and ending at index q. So for the full list, where p=1 and q=n a MERGESORT will start with (n-1) comparisons and have the following behavior.
\begin{tikzpicture}[level/.style={sibling distance=55mm/#1, level distance = 1.5cm}]
\node (z){$n-1$}
child {node (1a) {$\frac{n}{2}-1$}
child {node (2a) {$\frac{n}{2^2}-1$}
child {node {$\vdots$}
child {node (3a) {$\left(\frac{n}{2^k}-1\right)$}
child {node (01) {0}}
child {node (02) {0}}
}
child {node (3b) {$\left(\frac{n}{2^k}-1\right)$}
child {node (03) {0}}
child {node (04) {0}}
}
}
child {node {$\vdots$}}
}
child {node (2b) {$\frac{n}{2^2}-1$}
child {node {$\vdots$}}
child {node {$\vdots$}}
}
}
child {node (1b) {$\frac{n}{2}-1$}
child {node (2c) {$\frac{n}{2^2}-1$}
child {node {$\vdots$}}
child {node {$\vdots$}}
}
child {node (2d) {$\frac{n}{2^2}-1$}
child {node {$\vdots$}}
child {node {$\vdots$}
child {node (3c) {$\left(\frac{n}{2^k}-1\right)$}}
child {node (3d) {$\left(\frac{n}{2^k}-1\right)$}
child{node (05) {0}}
child{node (06) {0}
child [grow=right] {node (eq0) {$=$} edge from parent[draw=none]
child [grow=right] {node (eq0) {$0n$} edge from parent[draw=none]
child [grow=up] {node (eq1) {$2^k \left( \frac{n}{2^k}-1 \right)$} edge from parent[draw=none]
child [grow=up] {node (eq2) {$\vdots$} edge from parent[draw=none]
child [grow=up] {node (eq3) {$2^2 \left( \frac{n}{2^2}-1 \right)$} edge from parent[draw=none]
child [grow=up] {node (eq4) {$2^1\left( \frac{n}{2}-1 \right)$} edge from parent[draw=none]
child [grow=up] {node (eq5) {$2^0\left(n-1 \right)$} edge from parent[draw=none]}
}
}
}
}
child [grow=down] {node (eq6) {$\s{i=0}{\lg n} 2^i (\frac{n}{2^i}-1)$}edge from parent[draw=none]}
}
}
}
}
}
}
};
\path (1a) -- (1b) node [midway] {+};
\path (2a) -- (2b) node [midway] {+};
\path (2b) -- (2c) node [midway] {+};
\path (2c) -- (2d) node [midway] {+};
\path (3a) -- (3b) node [midway] {+};
\path (3c) -- (3b) node (3cent) [midway] {+};
\path (3c) -- (3cent) node (3cent) [midway] {$\cdots$};
\path (3cent) -- (3a) node (3cent) [midway] {$\cdots$};
\path (3c) -- (3d) node [midway] {+};
\path (01) -- (02) node [midway] {+};
\path (03) -- (04) node [midway] {+};
\path (05) -- (06) node [midway] {+};
\path (01) -- (06) node (0cent) [midway] {+};
\path (0cent) -- (05) node [midway] {$\cdots$};
\path (0cent) -- (02) node [midway] {$\cdots$};
\path (eq0) -- (eq1) node [midway] {+};
\path (eq2) -- (eq1) node [midway] {+};
\path (eq2) -- (eq3) node [midway] {+};
\path (eq4) -- (eq3) node [midway] {+};
\path (eq5) -- (eq4) node [midway] {+};
\path (eq0) -- (eq6) node [midway] {=};
\end{tikzpicture}
Because this gives $\lg n$ terms, we can make it a little easier by dropping the bottom row, which sums to 0 anyway, because it's $0n$.
\begin{align*}
\s{i=0}{\lg n-1} 2^i (\frac{n}{2^i}-1) &= \s{i=0}{\lg n-1} (n-2^i) \\
&= \s{i=0}{\lg n-1} n - \s{i=0}{\lg n-1} 2^i \\
&= (n\lg n) - (2^{\lg n-1 +1} -1) & \text{geometric series} \\
&= (n\lg n ) - (n-1) \\
&= n\lg n - n+1 \\
\end{align*}
\subsection{Merge Sort Recurrence}
When expressed as a recurrence relation, the mergesort algorithm given previously behaves like
\begin{align*}
S(n) &= S\left( \frac{n}{2} \right)+S\left( \frac{n}{2} \right)+n-1 \\
&= 2\cdot S\left( \frac{n}{2} \right)+n-1 \\
\intertext{Which gives the following recurrence relation}
S(0) &= S(1) = 0 & \text{Base case of 0 comparisons with 0 or 1 element}\\
S(n) &= S\left(\lfloor \frac{n}{2}\rfloor \right) + S\left( \lceil \frac{n}{2} \rceil \right)
\end{align*}
% ██ ██ ██ ██ ██ ██ ██ ██
% ░██ ░██ █████ ████ ░░ ░██ ░██ ░██ ░░
% ░██ ███████ ██████ █████ ██░░░██ █████ ██████ ██░░██ ██████ ██ ██████░██ ██████████ █████ ██████ ██ █████
% ░██░░██░░░██░░░██░ ██░░░██░██ ░██ ██░░░██░░██░░█ ██ ░░██ ░░██░░█░██░░░██░ ░██████ ░░██░░██░░██ ██░░░██░░░██░ ░██ ██░░░██
% ░██ ░██ ░██ ░██ ░███████░░██████░███████ ░██ ░ ██████████ ░██ ░ ░██ ░██ ░██░░░██ ░██ ░██ ░██░███████ ░██ ░██░██ ░░
% ░██ ░██ ░██ ░██ ░██░░░░ ░░░░░██░██░░░░ ░██ ░██░░░░░░██ ░██ ░██ ░██ ░██ ░██ ░██ ░██ ░██░██░░░░ ░██ ░██░██ ██
% ░██ ███ ░██ ░░██ ░░██████ █████ ░░██████░███ ░██ ░██░███ ░██ ░░██ ░██ ░██ ███ ░██ ░██░░██████ ░░██ ░██░░█████
% ░░ ░░░ ░░ ░░ ░░░░░░ ░░░░░ ░░░░░░ ░░░ ░░ ░░ ░░░ ░░ ░░ ░░ ░░ ░░░ ░░ ░░ ░░░░░░ ░░ ░░ ░░░░░
\section{Integer Arithmetic}
\subsection{Addition}
Just like in elementary addition, the time to add 2 n digit numbers is proportional to the number of digits. $\Theta(n)$.
Since each digit must be used to compute the sum this is the right order for best case time.
\begin{center}
\opadd{1234}{5678}\qquad
\end{center}
We assume that each digital addition takes constant time (with carry also, so ignore that little trouble spot) and label this constant $\alpha$. The time to add 2 n digit numbers is then $\alpha(n)$.
\subsection{Problem size}
If we were attempting to determine if a number was prime we would divide it by consecutive primes up to the square root of that number.
In Computer Science we want to approach all problems in terms of the problem size. So we should look at both in terms of the NUMBER OF DIGITS,
and not the size of the number. So while the prime identification problem is $\Theta{\sqrt{N}}$ where N is the number,
expressed in binary as $2^n$, n being the number of binary digits. $\Theta(2^{\frac{n}{2}})$. Giving an exponential time algorithm.
\subsection{Multiplication}
Elementary school approach to multiplication runs in $n^2$ time because every digit on top is multiplied by every digit on the bottom. There are $2n(n-1)$ atomic additions in this elementary approach as described in class.\\
\begin{center}
\opmul[displayintermediary=all]{1234}{5678}
\end{center}
\subsubsection{Recursive Multiplication}
By memorizing the numbers in large bases, say base 100, 2 digit decimal numbers can be treated as 1 digit numbers in base 100.
That makes the multiplication easier, because there are fewer steps.
To generalize this for n digit numbers, treat them as base $10^{\frac{n}{2}}$ and cut each in half. Each has $\frac{n}{2}$ digits, and we know the base.
Then, recurse through this method until we reach a base we really have memorized the table for. Then multiply them as 2 2 digit numbers, and pull out the answer.
% cd x ab equation.
\begin{tikzpicture}
\node[draw] at (0.5,0) {n};
\node at (0,0) {$\times$};
\node[draw] at (0.5,0.5) {n};
\node[draw] at (2.5,0) {$\frac{n}{2}$};
\node[draw] at (3,0) {$\frac{n}{2}$};
\node at (2,0) {$\times$};
\node[draw] at (2.5,0.75) {$\frac{n}{2}$};
\node[draw] at (3,0.75) {$\frac{n}{2}$};
\node[draw] at (4.5,0) {ab};
\node at (4,0) {$\times$};
\node[draw] at (4.5,0.5) {cd};
\node[draw] at (6.5,0) {a};
\node[draw] at (7,0) {b};
\node at (6,0) {$\times$};
\node[draw] at (6.5,0.5) {c};
\node[draw] at (7,0.5) {d};
\draw(6,-0.3) -- (7.5,-0.3);
\node at (6.9,-0.6) {bd};
\node at (6.7,-0.9) {bc};
\node at (6.7,-1.2) {ad};
\node at (7.7,-1.1) {\textbraceright $\alpha n$ time};
\node at (6.4,-1.5) {ac};
\node at (5.8,-1.5) {+};
\draw(6,-1.8) -- (7.5,-1.8);
\node[draw,minimum width = 2cm, minimum height = 0.45cm] at (10,0.5) {ac};
\node[draw,minimum width = 2cm] at (12,0.5) {bd};
\node at (9.5,0) {\textdownarrow};
\node at (11,0) {+};
\node at (12.5,0) {\textdownarrow};
\node[draw,minimum width = 2cm] at (11,-0.4) {ad+bc};
% \node at (9.5,-1) {$\frac{n}{2}$};
% \node at (12.5,-1) {$\frac{n}{2}$};
\node at (11,-1) {$\alpha n$ time};
\node at (15,-1) {Total add time = $2\alpha n$};
\end{tikzpicture}
$ac$ is an n digit number, as are $ad$, $bc$, $bd$. When adding, $bd$ is not shifted, but $ad$, and $bc$ are shifted by $\frac{n}{2}$ digits, and $ac$ is shifted by n digits.
Since there's no overlap for $ac$ and $bd$, you can add them simply by concatenation.
$ad + bc$ takes $\alpha n$ time. That value plus the center (overlapping) segment of $ac+bd$ is also $\alpha n$.
\newline
\newline
So without writing out the algorithm: $M(n) = 4M\left( \frac{n}{2} \right)+2\alpha n$ which gives us a nice recursion to work on. Let's assume the time to multiply in the base case is $\mu$. The base case is when both of our numbers are 1 digit long $M(1) = \mu$.
\begin{tikzpicture}
\Tree [.$2\alpha n$ $\cdots$ $\cdots$ $\cdots$ [.$2\alpha\frac{n}{2}$ $\cdots$ $\cdots$ $\cdots$
[.$\cdots$ $\cdots$ $\cdots$ $\cdots$ [.$2\alpha\frac{n}{2^k}$ $\mu$ $\mu$ $\mu$ $\mu$ ]]]]
\node[draw] at (4,0) {$4^0(2\alpha n)$};
\node[draw] at (5,-1) {$4^1(2\alpha \frac{n}{2})$};
\node[draw] at (6,-2) {$\vdots$};
\node[draw] at (8,-3) {$4^{k}(2\alpha \frac{n}{2^{k}})$};
\node[draw] at (8,-4) {$4^{{\lg(n)}}\mu$};
\end{tikzpicture}
Which is fun, I'm having fun.
\begin{align*}
\text{atomic actions} &= \s{i=0}{\lg(n)-1} (4^i (2\alpha\frac{n}{2^i}) ) + 4^{\lg(n)}\mu \\
&=2\alpha n \s{i=0}{\lg n-1}\frac{4^i}{2^i} \cdots\\
&=2\alpha n \s{i=0}{\lg n-1}{2^i} \cdots\\
&=2\alpha n \left( 2^{\lg n -1 +1} -1 \right) \cdots& & \text{geometric series} \\
&=2\alpha n \left( n-1 \right) + 4^{\lg(n)}\mu\\
&=2\alpha n \left( n-1 \right) + n^{\lg(4)}\mu & 4^{\lg(n)} \mu = n^{\lg 4} \mu \\
&=2\alpha n \left( n-1 \right) + n^{2}\mu & n^{\lg 4} \mu = n^2 \mu \\
&=2\alpha n \left( n-1 \right)+n^2 \mu
\end{align*}
We're doing $n^2$ multiplications and $n^2$ additions, so our application of
recursion didn't improve the running time of our algorithm. There's a better
way!
\subsection{Better Multiplication}
With the distributive law $(a+b)(c+d) = ac + ad + bc + bd$, we can use this property to improve the fast multiplication algorithm.
This will let us replace 1 recursive multiplication with 1 new addition and 1 subtraction, as we shall see.
\begin{tikzpicture}
\node[draw, color=red] at (0,0) {$w=(a+b)(c+d)$};
\node at (5,0) {$2\cdot\frac{n}{2}$ additions, 1n multiplication};
\node at (0,-0.4) {$=ac+ad+bc+bd$};
\node at (0,-1) {$u=ac$ 1n mult.};
\node at (0,-1.5) {$v=bd$ 1n mult.};
\node[draw, color=red] at (0,-2) {$z=w-(u+v)$};
\node at (5,-2) {1n addition, and 1n subtraction. };
\node[draw] at (10,0) {$u$};
\node[draw] at (10.4,0) {$v$};
\node[draw] at (10.2,-0.5) {$z$};
\node[color=red] at (9.7,-0.5) {$+$};
\end{tikzpicture}
By the same logic as the earlier multiplication algorithm, $ac$ and $bd$ are
shifted by n bits, and can be concatenated. Let $w=(a+b)(c+d)$, and $z = w
-(ac + bd) = (ad+bc)$ so to calculate $z$ takes 3 Multiplications, 3 additions
and 1 subtraction. Let's treat the subtraction as an addition, 4 additions.
As such, the recursion for this algorithm is $T(n) = 3T\left( \frac{n}{2} \right)+4\alpha n, T(1) = \mu$.
\begin{align*}
\s{i=0}{\lg n-1} 3^i \left( 4\alpha \frac{n}{2^i} \right) + 3^{\lg n}\mu &= 4\alpha n \sum \frac{3^i}{2^i} &+n^{\lg 3}\mu \\
&= 4\alpha n \cdot \frac{{\left(\frac{3}{2} \right)}^{\lg n -1 +1}-1}{\frac{3}{2}-1} &\vdots\\
&= 4\alpha n \cdot \frac{{\left(\frac{3}{2} \right)}^{\lg n }-1}{\frac{1}{2}} &\vdots\\
&= 8\alpha n \left[ n^{\lg \left( \frac{3}{2} \right)}-1 \right] &\vdots\\
&= 8\alpha n \left[ n^{\lg 3 - \lg 2}-1 \right] &\vdots\\
&= 8\alpha n \left[ \frac{n^{\lg 3}}{n^{\lg 2}}-1 \right] &\vdots\\
&= 8\alpha n \left[ \frac{n^{\lg 3}}{n}-1 \right] &\vdots\\
&= 8\alpha \left[ {n^{\lg 3}} -n \right] + n^{\lg 3}\mu\\
&\approx {n^{\lg 3}}\left[ 8\alpha +\mu \right] \\
&\approx {n^{1.57}}\left[ 8\alpha +\mu \right] \\
\end{align*}
This is $O(n^{1.57})$, a better result than the previous algorithm.
% ███████ ██ ████ ████ ██
% ░██░░░░██ ░░ ░██░██ ██░██ ░██
% ░██ ░██ █████ █████ ██ ██ ██████ ██████ ██ ██████ ███████ ░██░░██ ██ ░██ ██████ ██████ ██████ █████ ██████
% ░███████ ██░░░██ ██░░░██░██ ░██░░██░░█ ██░░░░ ░██ ██░░░░██░░██░░░██ ░██ ░░███ ░██ ░░░░░░██ ██░░░░ ░░░██░ ██░░░██░░██░░█
% ░██░░░██ ░███████░██ ░░ ░██ ░██ ░██ ░ ░░█████ ░██░██ ░██ ░██ ░██ ░██ ░░█ ░██ ███████ ░░█████ ░██ ░███████ ░██ ░
% ░██ ░░██ ░██░░░░ ░██ ██░██ ░██ ░██ ░░░░░██░██░██ ░██ ░██ ░██ ░██ ░ ░██ ██░░░░██ ░░░░░██ ░██ ░██░░░░ ░██
% ░██ ░░██░░██████░░█████ ░░██████░███ ██████ ░██░░██████ ███ ░██ ░██ ░██░░████████ ██████ ░░██ ░░██████░███
% ░░ ░░ ░░░░░░ ░░░░░ ░░░░░░ ░░░ ░░░░░░ ░░ ░░░░░░ ░░░ ░░ ░░ ░░ ░░░░░░░░ ░░░░░░ ░░ ░░░░░░ ░░░
% ████████ ██
% ░██░░░░░ ░██
% ░██ ██████ ██████ ██████████ ██ ██ ░██ ██████
% ░███████ ██░░░░██░░██░░█░░██░░██░░██░██ ░██ ░██ ░░░░░░██
% ░██░░░░ ░██ ░██ ░██ ░ ░██ ░██ ░██░██ ░██ ░██ ███████
% ░██ ░██ ░██ ░██ ░██ ░██ ░██░██ ░██ ░██ ██░░░░██
% ░██ ░░██████ ░███ ███ ░██ ░██░░██████ ███░░████████
% ░░ ░░░░░░ ░░░ ░░░ ░░ ░░ ░░░░░░ ░░░ ░░░░░░░░
\section{Recursion Master Formula}
$$ T(n) = aT(\frac{n}{b}) + cn^d, \; T(1)=f$$
Kruskal claims this is a better formula than the master theorem in the book, easier to use and more applicable.
Let's solve using tree method.
\begin{tikzpicture}
\Tree [.$cn^d$ $\cdots$ $\cdots$ $\cdots$ [.$c\frac{n}{b}^d$ $\cdots$ $\cdots$ $\cdots$
[.$c\frac{n}{b^2}^d$ $\cdots$ $\cdots$ $\cdots$
[.$\cdots$ $\cdots$ $\cdots$ $\cdots$ [.$c\frac{n}{b^{n-1}}^d$ $f$ $f$ $f$ $f$ ]]]]]
\node at (9,1) {num rows};
\node at (11,1) {sum};
\node[draw] at (9,0) {$1$};
\node[draw] at (9,-1) {$a$};
\node[draw] at (9,-2) {$a^2$};
\node[draw] at (9,-4) {$a^{n-1}$};
\node[draw] at (9,-5) {$a^n$};
\node at (10,-3) {$\vdots$};
\node[draw] at (11,0) {$cn^d$};
\node[draw] at (11,-1) {$ac(\frac{n}{b})^d$};
\node[draw] at (11,-2) {$a^2c(\frac{n}{b^2})^d$};
\node[draw] at (11,-4) {$a^{n-1}c(\frac{n}{b^{n-1}})^d$};
\node[draw] at (11,-5) {$fa^{\log_b n}$};
\end{tikzpicture}
You will get $\log_b n$ levels, the branching factor is a.
\begin{align*}
\s{i=0}{\log_b n-1} a^i c {(\frac{n}{b^i})}^d &= cn^d \s{i=0}{\log_b n-1}\frac{a^i}{{b^i}^d} &+ fn^{\log_b a} \\
&= cn^d \s{i=0}{\log_b n-1}\frac{a^i}{{b^d}^i} &+ \vdots\\
&= cn^d \s{i=0}{\log_b n-1}{\left( \frac{a}{b^d}\right)}^i \\
&= cn^d \left(\frac{{(\frac{a}{b^d})}^{\log_b n}-1}{\frac{a}{b^d}-1}\right) \\
&=cn^d \left( \f{n^{\log_b (\frac{a}{b^d})} -1 }{\frac{a}{b^d}-1 } \right) \\
&=cn^d \left( \f{n^{\log_b {a} -\log_b{b^d}} -1 }{\frac{a}{b^d}-1 } \right) \\
&=cn^d \left( \f{n^{\log_b {a} -d} -1 }{\frac{a}{b^d}-1 } \right) \\
&= \f{cn^{\log_b {a}} -cn^d }{\frac{a}{b^d}-1 } +\vdots \\
&=\frac{cn^{\log_b a}}{\frac{a}{b^d}-1} - \frac{cn^d}{\frac{a}{b^d}-1} + fn^{\log_b a} \\
&=\left( \frac{c}{\frac{a}{b^d}-1}+f \right)\cdot{n^{\log_b a}} - \frac{cn^d}{\frac{a}{b^d}-1} \\
\end{align*}
This formula can't apply to the situation when the value of a geometric sum
would be 1. The geometric sum isn't applicable in that case. SO this equation
isn't applicable when $a=b^d$, we need a special case. When the r term = 1, a
geometric series becomes a simple summation of 1, thus in this case if $a=b^d$
the formula becomes $cn^d \log_b n + fn^{\log_b a}$.
In the special case of merge sort, we drop the constant -1 from the non
recursion part of the term, and apply the special case, then we repeat the
process with the n dropped, and add the two results.
\begin{align*}
a\ne b^d && \left( \frac{c}{\frac{a}{b^d}-1}+f \right)\cdot{n^{\log_b a}} - \frac{cn^d}{\frac{a}{b^d}-1} \\\\
a= b^d && cn^d \log_b n + fn^{\log_b a}
\end{align*}
The relative sizes of these constant factors will overwhelm in differing circumstances.
\begin{align*}
a > b^d \rightarrow & T(n) \approx \left( \frac{c}{\frac{a}{b^d}-1}+f \right)\cdot n^{\log_b a} &= \Theta (n^{\log_b a})\\\\
a < b^d \rightarrow & T(n) \approx \frac{cn^d}{1-\frac{a}{b^d}} &= \Theta (n^d) \\\\
a = b^d \rightarrow & T(n) \approx cn^d \log_b n \;\;\;\; \text{because $d = \log_b a$} &= \Theta (n^d(\log_b n))\\\\
\end{align*}
\subsection{Applying to known algorithms}
\subsubsection{Multiplication}
\begin{align*}
T(n)&=4T(\frac{n}{2})+2\alpha n , T(1)=\mu \\
&a=4,b=2,c=2\alpha,d=1,f=\mu \\
&\left( \frac{2\alpha}{2-1}+\mu \right)n^{\lg 4} - \frac{2\alpha n}{2-1} \\
&=\left( 2\alpha+\mu \right)n^2 -2\alpha n \approx \Theta (n^{2}) \\
&=2\alpha\left( n^2 -n \right)+\mu n^2 \\
&\approx \Theta (n^{2})
\end{align*}
\subsubsection{Better Multiplication}
\begin{align*}
T(n)&=3T(\frac{n}{2})+4\alpha n , T(1)=\mu \\
&a=3,b=2,c=4\alpha,d=1,f=\mu \\
&\left( \frac{4\alpha}{\frac{3}{2}-1}+\mu \right)n^{\lg 3} - \frac{4\alpha n}{\frac{3}{2}-1} \\
&=\left( 8\alpha+\mu \right)n^{1.57}-8\alpha n \approx \Theta (n^{1.57}) \\
\end{align*}
\subsubsection{Mergesort}
When we get
\begin{tikzpicture}[sibling distance=200pt]
\node(a) {$T(n) = 2T(\frac{n}{2}) +n -1, T(1) =0$}
child{node (l1) {$\text{n term:} \; a=2,b=2,c=1,d=1$}
child{node (l2) {$a= b^d$}
child{node (l3){$cn^d \log_b n$}
child{node (l4) {$1\cdot n^1 \log_2n = n \lg n$}
}
}
}
}
child{node (r1){$\text{-1 term:} \; a=2,b=2,c=-1,d=0$}
child{node (r2){$ a\ne b^d$}
child{node (r3) {$\left( \frac{c}{\frac{a}{b^d}-1}+f \right)\cdot{n^{\log_b a}} - \frac{cn^d}{\frac{a}{b^d}-1}$}
child{node (r4) {$\frac{-1}{\frac{2}{2^0 -1}-1}n^{\lg 2} -\frac{-1\cdot n^0}{\frac{2}{2^0}-1}$}
child{node (r5) {$ = -n+1$}
}}}}};
\end{tikzpicture}
\subsubsection{Implementation details}
This gives us the incredible ability to use the constants of the recurrence
into a running time and determine if it will be greater than another algorithm in
constant time. There's also the Schonhage Strassen algorithm, which is
$\Theta(n\log n \log\log n)$.
In real life, the size of T (1) is the word size of your machine, because the
atomic multiplication is implemented at that level. So our atomic base is
$2^{64}$ for most machines.
% ██ ██ ██
% ░██ ░██ ██████ ░██
% ░██ ░██ █████ ██████ ░██░░░██ ██████ ██████ ██████ ██████
% ░██████████ ██░░░██ ░░░░░░██ ░██ ░██ ██░░░░ ██░░░░██░░██░░█░░░██░
% ░██░░░░░░██░███████ ███████ ░██████ ░░█████ ░██ ░██ ░██ ░ ░██
% ░██ ░██░██░░░░ ██░░░░██ ░██░░░ ░░░░░██░██ ░██ ░██ ░██
% ░██ ░██░░██████░░████████░██ ██████ ░░██████ ░███ ░░██
% ░░ ░░ ░░░░░░ ░░░░░░░░ ░░ ░░░░░░ ░░░░░░ ░░░ ░░
\section{Heapsort}
Created by J.W.J. Williams
Improved by Robert Floyd
\begin{itemize}
\item Create Heap
\item Finish
\end{itemize}
\defn[Heap]{A binary tree where every value is larger than its
children. Equivalently its descendants. In this class we require that all
binary trees are full binary trees.}
\begin{tikzpicture}[centered]
\tikzset{every tree node/.style={draw,circle}, level distance = 2cm, sibling distance = 1cm}
\Tree[.$100$ [.$90$ [.$80$ $20$ $30$ ] [.$50$ $40$ ] ] [.$70$ $60$ $10$ ]]
\end{tikzpicture}
\subsection{Create Heap}
Turn a tree into a heap.\\
The traditional way to create a heap is to insert at the end of the array and sift up.
Robert Floyd created a better way to create the heap. Treat the tree as a recursive heap:
each parent is the parent to 2 heaps, and sift it from the bottom up. Create heap in left,
create heap on right, then sift root down, and move up a level.
\subsubsection{Heap Creation Analysis}
In a binary tree, most nodes are near bottom, so when doing bottom up technique, most
work is done near bottom, and because you're near the bottom you don't have far
to go down. So we take advantage of that fact: Most elements are near the
bottom and don't have far to go.
There are $ \frac{n}{2}$ leaves. Each doing 0 comparisons.
There are $ \frac{n}{4}$ parents of leaves. Each doing 2 comparisons.
There are $ \frac{n}{8}$ grandparents of leaves. Each doing 4 comparisons (2 per level).
There are $ \frac{n}{16}$ greatgrandparents of leaves. Each doing 6 comparisons (2 per level).
\begin{align*}
\frac{n}{2}\cdot0 + \frac{n}{4}\cdot2 + \frac{n}{8}\cdot4 + \frac{n}{16}\cdot6 +\frac{n}{32}\cdot8 + \frac{n}{64}\cdot10 + \cdots \\
= n\cdot\left[ \frac{1}{2} + \frac{2}{4} + \frac{3}{6} + \frac{4}{16} + \frac{5}{32} + \cdots \right]&\l\;\;\;\text{This sum is:} \\
= \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\cdots &= 1 \\
+ \frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\cdots &= \frac{1}{2} \\
+ \frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\cdots &= \frac{1}{4} \\
+ \frac{1}{16}+\frac{1}{32}+\cdots &=\frac{1}{8} \\
&+\vdots \\
&=2n
\end{align*}
So Heap creation does $\Theta(2n)$ comparisons
\subsection{Finish}
\begin{itemize}
\item Put root node at the bottom of the array, as it must be the largest element, so
it will go at the end of the sorted array.
\item Then take the bottom right hand leaf and move to a tmp space.
\item Then sift, reordering the tree and put the tmp leaf in its proper spot.
\item Repeat.
\end{itemize}
Sift comparisons: each level has 2 comparisons, child and tmp. There are
$\approx \lg n $ levels. Total for a sift $\approx 2 \lg n$ This must be done
for each element in the tree, so our heap has an upper bound of $\approx 2n \lg
n$.
But the heap shrinks, each iteration removes an element. So let's sum 0 to n-1
(because we remove an element first before sifting).