-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainAndtest.py
323 lines (258 loc) · 10.3 KB
/
trainAndtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import torch
import math
import torch.nn as nn
from sklearn.metrics import f1_score, accuracy_score, precision_score, recall_score
from sklearn.metrics import roc_auc_score, confusion_matrix
from statistics import mean
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
criterion = nn.CrossEntropyLoss()
import os
def data_renew(pairs, emb_type):
if emb_type == 'onehot':
tcr = pairs[:, :, 0:21].type(torch.LongTensor).to(device)
epi = pairs[:, :, 21:-1].type(torch.LongTensor).to(device)
elif emb_type == 'BLOSUM62':
tcr = pairs[:, :, 0:20].to(device)
epi = pairs[:, :, 20:].to(device)
else:
tcr = pairs[:, :, 0:5].to(device)
epi = pairs[:, :, 5:].to(device)
return tcr, epi
# 定义训练模型
def train_test(model, train_dataset, test_dataset, optimizer, n_epoch, e_type,criterion):
# train model
model.train()
best_loss = 1
L = torch.zeros(n_epoch, 500)
for epoch in range(n_epoch): # 训练的数据量为5个epoch,每个epoch为一个循环
# 清除缓存
# torch.cuda.empty_cache()
# optimizer.zero_grad()
for i, data in enumerate(train_dataset, 0):
#loss = 0 # 定义一个变量方便我们对loss进行输出
#correct = 0 # 定义准确率
pairs, label = data
tcr, epi = data_renew(pairs=pairs, emb_type=e_type)
label = label.unsqueeze(-1).to(device)
n = tcr.size()[0]
# 计算输出
output = torch.unsqueeze(model(tcr, epi), 1)
pred = output.argmax(dim=2)
output = output.view(-1, 2)
# print('tcr.size(),epi.size(),label.size(),pred.size()')
# print(tcr.size(),epi.size(),label.size(),pred.size())
pred = pred.view(-1)
label = label.long().view(-1)
# print('pred',pred.size(),'label',label.size())
# print('output',output.size(),output)
# 计算每个patch的损失与正确率
loss = criterion(output, label)
correct = torch.eq(pred, label.long()).sum().float().item()
# print('correct',correct)
# loss = loss / n
acc = correct / n
if loss < best_loss:
# if acc < 1.0:
best_loss = loss
param = model.state_dict()
if loss == best_loss:
# if acc < 1.0:
param = model.state_dict()
optimizer.zero_grad()
loss.backward() # loss反向传播
optimizer.step() # 反向传播后参数更新
'''
if i % 10 == 0:
ni = math.ceil(i / 10)
L[epoch, ni] = loss
# running_loss += loss.item()
print('Epoch:', epoch, 'ni:', ni, ';', 'loss = ', loss, ';', 'acc = ', acc)
'''
print('End training. Begin testing')
good_model = model
good_model.load_state_dict(param)
# test model
good_model.eval()
good_model.to(device)
# optimizer.zero_grad()
y_score = []
y_test = []
test_loss = []
ACC = []
AUC = []
PRE = []
REC = []
SPE = []
F1 = []
MCC = []
with torch.no_grad():
for i, data in enumerate(test_dataset, 0):
#loss = 0 # 定义一个变量方便我们对loss进行输出
correct = 0 # 定义准确率
pairs, label = data
# print(pairs.size())
tcr, epi = data_renew(pairs=pairs, emb_type=e_type)
label = label.unsqueeze(-1).to(device)
n = tcr.size()[0]
# 计算输出
output = torch.unsqueeze(good_model(tcr, epi), 1)
pred = output.argmax(dim=2)
output = output.view(-1, 2)
y_score.append(output[:, 1].type(torch.FloatTensor))
# print('tcr.size(),epi.size(),label.size(),pred.size()')
# print(tcr.size(),epi.size(),label.size(),pred.size())
pred = pred.view(-1)
# pred = output
label = label.long().view(-1)
loss = criterion(output, label.long())
pred = pred.detach().cpu().numpy()
label = label.detach().cpu().numpy()
'''
torch.LongTensor(a.numpy())
'''
y_test.append(label)
# y_test.append(label.type(torch.FloatTensor))
# print('pred',pred.size(),'label',label.size())
# print('output',output.size(),output)
# 计算每个patch的损失与正确率
#print(label, pred)
[tn, fp], [fn, tp] = confusion_matrix(label, pred)
#print(tn,fp,fn,tp)
acc = accuracy_score(label, pred)
auc = roc_auc_score(label, pred)
pre = precision_score(label, pred)
rec = recall_score(label, pred)
spe = tn / (tn + fn)
f1 = f1_score(label, pred)
mcc = (tp * tn - fp * fn) / math.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
# print('correct',correct)
loss = loss / n
#acc = correct / n
ACC.append(acc)
AUC.append(auc)
PRE.append(pre)
REC.append(rec)
SPE.append(spe)
F1.append(f1)
MCC.append(mcc)
test_loss.append(loss)
torch.cuda.empty_cache()
return test_loss, mean(ACC), mean(AUC), mean(PRE), mean(REC), mean(SPE), mean(F1), mean(MCC)
def train_model(model, dataset, optimizer, n_epoch, save_path, b_loss, e_type):
# 定义batch个数
model.train()
best_loss = b_loss
L = torch.zeros(n_epoch, 500)
for epoch in range(n_epoch): # 训练的数据量为5个epoch,每个epoch为一个循环
# 清除缓存
# torch.cuda.empty_cache()
# optimizer.zero_grad()
for i, data in enumerate(dataset, 0):
loss = 0 # 定义一个变量方便我们对loss进行输出
correct = 0 # 定义准确率
pairs, label = data
tcr, epi = data_renew(pairs=pairs, emb_type=e_type)
label = label.unsqueeze(-1).to(device)
n = tcr.size()[0]
# 计算输出
output = torch.unsqueeze(model(tcr, epi), 1)
pred = output.argmax(dim=2)
output = output.view(-1, 2)
# print('tcr.size(),epi.size(),label.size(),pred.size()')
# print(tcr.size(),epi.size(),label.size(),pred.size())
pred = pred.view(-1)
label = label.long().view(-1)
# print('pred',pred.size(),'label',label.size())
# print('output',output.size(),output)
# 计算每个patch的损失与正确率
loss = criterion(output, label.long())
correct = torch.eq(pred, label.long()).sum().float().item()
# print('correct',correct)
# loss = loss / n
acc = correct / n
if loss < best_loss:
# if acc < 1.0:
best_loss = loss
param = model.state_dict()
if loss == best_loss:
# if acc < 1.0:
param = model.state_dict()
optimizer.zero_grad()
loss.backward() # loss反向传播
optimizer.step() # 反向传播后参数更新
if i % 10 == 0:
ni = math.ceil(i / 10)
L[epoch, ni] = loss
# running_loss += loss.item()
print('Epoch:', epoch, 'ni:', ni, ';', 'loss = ', loss, ';', 'acc = ', acc)
torch.save(param, save_path)
# torch.save(model, 'model.pkl') # 保存整个神经网络的结构和模型参数
# torch.save(model.state_dict(), 'model_params.pkl') # 只保存神经网络的模型参数
return L, best_loss
# 定义测数模型,原来的测试模型
def test_model(model, dataset, emb_type):
# 定义batch个数
model.eval()
model.to(device)
# optimizer.zero_grad()
y_score = []
y_test = []
test_loss = []
ACC = []
AUC = []
PRE = []
REC = []
SPE = []
F1 = []
MCC = []
with torch.no_grad():
for i, data in enumerate(dataset, 0):
loss = 0 # 定义一个变量方便我们对loss进行输出
correct = 0 # 定义准确率
pairs, label = data
# print(pairs.size())
tcr, epi = data_renew(pairs=pairs, emb_type=emb_type)
label = label.unsqueeze(-1).to(device)
n = tcr.size()[0]
# 计算输出
output = torch.unsqueeze(model(tcr, epi), 1)
pred = output.argmax(dim=2)
output = output.view(-1, 2)
y_score.append(output[:, 1].type(torch.FloatTensor))
# print('tcr.size(),epi.size(),label.size(),pred.size()')
# print(tcr.size(),epi.size(),label.size(),pred.size())
pred = pred.view(-1)
# pred = output
label = label.long().view(-1)
loss = criterion(output, label.long())
pred = pred.detach().cpu().numpy()
label = label.detach().cpu().numpy()
'''
torch.LongTensor(a.numpy())
'''
y_test.append(label)
# y_test.append(label.type(torch.FloatTensor))
# print('pred',pred.size(),'label',label.size())
# print('output',output.size(),output)
# 计算每个patch的损失与正确率
[tn, fp], [fn, tp] = confusion_matrix(label, pred)
acc = accuracy_score(label, pred)
auc = roc_auc_score(label, pred)
pre = precision_score(label, pred)
rec = recall_score(label, pred)
spe = tn / (tn + fn)
f1 = f1_score(label, pred)
mcc = (tp * tn - fp * fn) / math.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
# print('correct',correct)
# loss = loss / n
acc = correct / n
ACC.append(acc)
AUC.append(auc)
PRE.append(pre)
REC.append(rec)
SPE.append(spe)
F1.append(f1)
MCC.append(mcc)
test_loss.append(loss)
torch.cuda.empty_cache()
return test_loss, mean(ACC), mean(AUC), mean(PRE), mean(REC), mean(SPE), mean(F1), mean(MCC)