-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
235 lines (186 loc) · 9.16 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import torch
import shutil
import string
import subprocess
import random
import json
import glob
import time
from diffusers import AutoencoderKL, UNet2DConditionModel, SchedulerMixin
from diffusers.utils import pt_to_pil
from transformers import CLIPTextModel, CLIPTokenizer
from tqdm import tqdm
TEMP_DIRECTORIES_ROOT = 'temp_directories_for_blip_vqa_evaluation'
def make_temp_directories():
"""
Creates temporary directories for BLIP VQA evaluation using the T2I-CompBench structure.
Returns:
evaluation_dir_path (str):
The path to the directory of evaluation. T2I-CompBench's BLIP VQA evaluation
directories and files will be created under this directory.
samples_dir_path (str):
The path to the directory for storing samples.
"""
evaluation_dir_path = ''.join(random.choices(string.ascii_lowercase + string.digits, k=40)) + str(int(time.time() * 1000))
evaluation_dir_path = os.path.join(TEMP_DIRECTORIES_ROOT, evaluation_dir_path)
if os.path.exists(evaluation_dir_path):
raise Exception("Something pretty rare happened!!!")
samples_dir_path = os.path.join(evaluation_dir_path, 'samples')
os.makedirs(samples_dir_path)
return evaluation_dir_path, samples_dir_path
def evaluate_direcotry_using_blip_vqa(
image_folder_path: str,
print_log: bool = True
):
"""
Evaluates images in a specified directory using the BLIP VQA model. The results will also be saved in
a JSON file called 'vqa_result.json' in the same directory.
Args:
image_folder_path (str): The path to the directory containing the images to be evaluated.
print_log (bool, optional): Whether to print log messages during evaluation. Defaults to True.
Returns:
dict: A dictionary containing the scores for each image and question pair.
"""
assert os.path.exists(image_folder_path)
image_folder_path = os.path.abspath(image_folder_path)
images_in_folder_pattern = os.path.join(image_folder_path, '*.png')
list_of_images = glob.glob(images_in_folder_pattern)
if print_log:
print(f"Evaluating {len(list_of_images)} images")
evaluation_dir_path, samples_dir_path = make_temp_directories()
for imgpath in list_of_images:
shutil.copy2(imgpath, samples_dir_path)
subprocess.call(["./t2i_compbench_vqa_evaluation.sh", os.path.abspath(evaluation_dir_path)])
question_id_score_dict = {}
with open(os.path.join(evaluation_dir_path, 'annotation_blip/vqa_result.json')) as f:
vqa_result_json = json.load(f)
for item in vqa_result_json:
question_id_score_dict[item["question_id"]] = item["answer"]
image_scores_dict = {}
with open(os.path.join(evaluation_dir_path, 'annotation1_blip/vqa_test.json')) as f:
vqa_test_json = json.load(f)
for item in vqa_test_json:
image_scores_dict[os.path.basename(item['image'])] = question_id_score_dict[item['question_id']]
assert len(image_scores_dict) == len(list_of_images)
assert set(image_scores_dict.keys()) == set([os.path.basename(f) for f in list_of_images])
shutil.rmtree(evaluation_dir_path)
result_path = os.path.join(image_folder_path, 'vqa_result.json')
if os.path.exists(result_path) and print_log:
print("Rewriting results of VQA")
with open(result_path, 'w') as f:
json.dump(image_scores_dict, f)
return image_scores_dict
def generate_samples_and_evaluate_blip_vqa(
vae: AutoencoderKL,
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModel,
prompt: str,
fixed_text_embeddings: torch.Tensor,
evaluation_path: str,
batch_size: int = 10,
num_evaluation_images: int = 30,
guidance_scale: float = 7.5,
num_inference_steps: int = 25,
image_size: int = 512,
clean_fixed_text_embeddings: torch.Tensor = None,
early_guidance_timestep_threshold: int = -1,
seed: int = None,
):
"""
Generates samples using components of T2I Stable Diffusion (with given text_embedding tensor) and evaluates them using the VQA metric.
Args:
vae (AutoencoderKL):
The VAE model.
unet (UNet2DConditionModel):
The UNet model.
scheduler (SchedulerMixin):
The noise scheduler for doing the backward process.
tokenizer (CLIPTokenizer):
The tokenizer for CLIP model.
text_encoder (CLIPTextModel):
The text encoder model.
prompt (str):
The prompt for generating the samples.
fixed_text_embeddings (torch.Tensor):
The input text embeddings tensor to the UNet. This could be the output of the text_encoder or a modified version of it.
evaluation_path (str):
The path to save the generated images and the evaluation results.
batch_size (int, optional):
The batch size for generating samples. Defaults to 10.
num_evaluation_images (int, optional):
The number of evaluation images to generate. Defaults to 30.
guidance_scale (float, optional):
The scale factor for guidance. Defaults to 7.5.
num_inference_steps (int, optional):
The number of inference steps. Defaults to 25.
image_size (int, optional):
The size of the generated images. Defaults to 512.
clean_fixed_text_embeddings (torch.Tensor, optional):
The clean fixed text embeddings, generated by the text_encoder with the prompt as input. Defaults to None.
This is used for early guidance if early_guidance_timestep_threshold is set to a value greater than 0.
early_guidance_timestep_threshold (int, optional):
Specifies the threshold for initiating early guidance, with a default value of -1. When this threshold is set to
a particular timestep t, the guidance will utilize `fixed_text_embeddings` instead of `clean_fixed_text_embeddings` for
all timesteps greater than or equal to t.
seed (int, optional):
The random seed for generating samples. Defaults to None.
Returns:
Tuple[Dict[str, float], float]:
A tuple containing a dictionary of image scores and the average score.
"""
assert num_evaluation_images % batch_size == 0, "just for now!!!"
if os.path.exists(evaluation_path):
print("Removing previous evaluation path ...")
shutil.rmtree(evaluation_path)
os.makedirs(evaluation_path)
text_embeddings = fixed_text_embeddings.repeat(batch_size, 1, 1).clone()
max_length = text_embeddings.shape[1]
uncond_input = tokenizer([""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt")
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(unet.device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
if early_guidance_timestep_threshold != -1:
text_embeddings_clean = clean_fixed_text_embeddings.repeat(batch_size, 1, 1).clone()
text_embeddings_clean = torch.cat([uncond_embeddings, text_embeddings_clean])
torch.cuda.empty_cache(); # TODO: ?
f = 2 ** (len(vae.config.block_out_channels) - 1)
for b_idx in range(num_evaluation_images // batch_size):
latents = torch.randn(
(batch_size, unet.config.in_channels, image_size // f, image_size // f),
device=unet.device,
generator=None if seed is None else torch.Generator(device='cuda').manual_seed(seed*100 + b_idx),
)
latents = latents * scheduler.init_noise_sigma
scheduler.set_timesteps(num_inference_steps)
for t in tqdm(scheduler.timesteps):
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep=t)
with torch.no_grad():
noise_pred = unet(
latent_model_input,
t,
encoder_hidden_states=text_embeddings if t > early_guidance_timestep_threshold else text_embeddings_clean
).sample
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = scheduler.step(noise_pred, t, latents).prev_sample
latents = 1 / vae.scaling_factor * latents
with torch.no_grad():
images = vae.decode(latents).sample
for idx, pil_img in enumerate(pt_to_pil(images)):
pil_img.save(os.path.join(evaluation_path, f'{prompt[0]}_{(b_idx*batch_size + idx):06d}.png'))
prev_device = vae.device
vae.to('cpu')
text_encoder.to('cpu')
unet.to('cpu');
torch.cuda.empty_cache(); # TODO: ?
image_scores_dict = evaluate_direcotry_using_blip_vqa(image_folder_path=evaluation_path)
torch.cuda.empty_cache(); # TODO: ?
vae.to(prev_device)
text_encoder.to(prev_device)
unet.to(prev_device)
average_score = sum(map(lambda x: float(x), image_scores_dict.values())) / len(image_scores_dict)
return image_scores_dict, average_score