Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Question on Willow compatibility #5

Open
decaduto opened this issue Jul 5, 2022 · 0 comments
Open

Question on Willow compatibility #5

decaduto opened this issue Jul 5, 2022 · 0 comments

Comments

@decaduto
Copy link

decaduto commented Jul 5, 2022

Hello,
I own a Willow kernel based devices (8T), will this kernel works on it?
it has MIUI 12.5 and the device model is M1908C3XG.

Is necessary to flash also the system partition of ArrowOS or just compiling this custom kernel and flashing it will work ?

Thanks,

WisnuArdhi28 pushed a commit to WisnuArdhi28/quicksilver_kernel_xiaomi_ginkgo that referenced this issue Aug 8, 2022
…tion

commit 07fd5b6cdf3cc30bfde8fe0f644771688be04447 upstream.

Each cset (css_set) is pinned by its tasks. When we're moving tasks around
across csets for a migration, we need to hold the source and destination
csets to ensure that they don't go away while we're moving tasks about. This
is done by linking cset->mg_preload_node on either the
mgctx->preloaded_src_csets or mgctx->preloaded_dst_csets list. Using the
same cset->mg_preload_node for both the src and dst lists was deemed okay as
a cset can't be both the source and destination at the same time.

Unfortunately, this overloading becomes problematic when multiple tasks are
involved in a migration and some of them are identity noop migrations while
others are actually moving across cgroups. For example, this can happen with
the following sequence on cgroup1:

 Enprytna#1> mkdir -p /sys/fs/cgroup/misc/a/b
 Enprytna#2> echo $$ > /sys/fs/cgroup/misc/a/cgroup.procs
 Enprytna#3> RUN_A_COMMAND_WHICH_CREATES_MULTIPLE_THREADS &
 Enprytna#4> PID=$!
 ArrowOS-Devices#5> echo $PID > /sys/fs/cgroup/misc/a/b/tasks
 ArrowOS-Devices#6> echo $PID > /sys/fs/cgroup/misc/a/cgroup.procs

the process including the group leader back into a. In this final migration,
non-leader threads would be doing identity migration while the group leader
is doing an actual one.

After Enprytna#3, let's say the whole process was in cset A, and that after Enprytna#4, the
leader moves to cset B. Then, during ArrowOS-Devices#6, the following happens:

 1. cgroup_migrate_add_src() is called on B for the leader.

 2. cgroup_migrate_add_src() is called on A for the other threads.

 3. cgroup_migrate_prepare_dst() is called. It scans the src list.

 4. It notices that B wants to migrate to A, so it tries to A to the dst
    list but realizes that its ->mg_preload_node is already busy.

 5. and then it notices A wants to migrate to A as it's an identity
    migration, it culls it by list_del_init()'ing its ->mg_preload_node and
    putting references accordingly.

 6. The rest of migration takes place with B on the src list but nothing on
    the dst list.

This means that A isn't held while migration is in progress. If all tasks
leave A before the migration finishes and the incoming task pins it, the
cset will be destroyed leading to use-after-free.

This is caused by overloading cset->mg_preload_node for both src and dst
preload lists. We wanted to exclude the cset from the src list but ended up
inadvertently excluding it from the dst list too.

This patch fixes the issue by separating out cset->mg_preload_node into
->mg_src_preload_node and ->mg_dst_preload_node, so that the src and dst
preloadings don't interfere with each other.

Signed-off-by: Tejun Heo <[email protected]>
Reported-by: Mukesh Ojha <[email protected]>
Reported-by: shisiyuan <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Link: https://www.spinics.net/lists/cgroups/msg33313.html
Fixes: f817de9 ("cgroup: prepare migration path for unified hierarchy")
Cc: [email protected] # v3.16+
Signed-off-by: Greg Kroah-Hartman <[email protected]>
WisnuArdhi28 pushed a commit to WisnuArdhi28/quicksilver_kernel_xiaomi_ginkgo that referenced this issue Aug 8, 2022
In 2019, Sergey fixed a lockdep splat with 15341b1dd409 ("char/random:
silence a lockdep splat with printk()"), but that got reverted soon
after from 4.19 because back then it apparently caused various problems.
But the issue it was fixing is still there, and more generally, many
patches turning printk() into printk_deferred() have landed since,
making me suspect it's okay to try this out again.

This should fix the following deadlock found by the kernel test robot:

[   18.287691] WARNING: possible circular locking dependency detected
[   18.287692] 4.19.248-00165-g3d1f971aa81f Enprytna#1 Not tainted
[   18.287693] ------------------------------------------------------
[   18.287712] stop/202 is trying to acquire lock:
[   18.287713] (ptrval) (console_owner){..-.}, at: console_unlock (??:?)
[   18.287717]
[   18.287718] but task is already holding lock:
[   18.287718] (ptrval) (&(&port->lock)->rlock){-...}, at: pty_write (pty.c:?)
[   18.287722]
[   18.287722] which lock already depends on the new lock.
[   18.287723]
[   18.287724]
[   18.287725] the existing dependency chain (in reverse order) is:
[   18.287725]
[   18.287726] -> Enprytna#2 (&(&port->lock)->rlock){-...}:
[   18.287729] validate_chain+0x84a/0xe00
[   18.287729] __lock_acquire (lockdep.c:?)
[   18.287730] lock_acquire (??:?)
[   18.287731] _raw_spin_lock_irqsave (??:?)
[   18.287732] tty_port_tty_get (??:?)
[   18.287733] tty_port_default_wakeup (tty_port.c:?)
[   18.287734] tty_port_tty_wakeup (??:?)
[   18.287734] uart_write_wakeup (??:?)
[   18.287735] serial8250_tx_chars (??:?)
[   18.287736] serial8250_handle_irq (??:?)
[   18.287737] serial8250_default_handle_irq (8250_port.c:?)
[   18.287738] serial8250_interrupt (8250_core.c:?)
[   18.287738] __handle_irq_event_percpu (??:?)
[   18.287739] handle_irq_event_percpu (??:?)
[   18.287740] handle_irq_event (??:?)
[   18.287741] handle_edge_irq (??:?)
[   18.287742] handle_irq (??:?)
[   18.287742] do_IRQ (??:?)
[   18.287743] common_interrupt (entry_32.o:?)
[   18.287744] _raw_spin_unlock_irqrestore (??:?)
[   18.287745] uart_write (serial_core.c:?)
[   18.287746] process_output_block (n_tty.c:?)
[   18.287747] n_tty_write (n_tty.c:?)
[   18.287747] tty_write (tty_io.c:?)
[   18.287748] __vfs_write (??:?)
[   18.287749] vfs_write (??:?)
[   18.287750] ksys_write (??:?)
[   18.287750] sys_write (??:?)
[   18.287751] do_fast_syscall_32 (??:?)
[   18.287752] entry_SYSENTER_32 (??:?)
[   18.287752]
[   18.287753] -> Enprytna#1 (&port_lock_key){-.-.}:
[   18.287756]
[   18.287756] -> #0 (console_owner){..-.}:
[   18.287759] check_prevs_add (lockdep.c:?)
[   18.287760] validate_chain+0x84a/0xe00
[   18.287761] __lock_acquire (lockdep.c:?)
[   18.287761] lock_acquire (??:?)
[   18.287762] console_unlock (??:?)
[   18.287763] vprintk_emit (??:?)
[   18.287764] vprintk_default (??:?)
[   18.287764] vprintk_func (??:?)
[   18.287765] printk (??:?)
[   18.287766] get_random_u32 (??:?)
[   18.287767] shuffle_freelist (slub.c:?)
[   18.287767] allocate_slab (slub.c:?)
[   18.287768] new_slab (slub.c:?)
[   18.287769] ___slab_alloc+0x6d0/0xb20
[   18.287770] __slab_alloc+0xd6/0x2e0
[   18.287770] __kmalloc (??:?)
[   18.287771] tty_buffer_alloc (tty_buffer.c:?)
[   18.287772] __tty_buffer_request_room (tty_buffer.c:?)
[   18.287773] tty_insert_flip_string_fixed_flag (??:?)
[   18.287774] pty_write (pty.c:?)
[   18.287775] process_output_block (n_tty.c:?)
[   18.287776] n_tty_write (n_tty.c:?)
[   18.287777] tty_write (tty_io.c:?)
[   18.287778] __vfs_write (??:?)
[   18.287779] vfs_write (??:?)
[   18.287780] ksys_write (??:?)
[   18.287780] sys_write (??:?)
[   18.287781] do_fast_syscall_32 (??:?)
[   18.287782] entry_SYSENTER_32 (??:?)
[   18.287783]
[   18.287783] other info that might help us debug this:
[   18.287784]
[   18.287785] Chain exists of:
[   18.287785]   console_owner --> &port_lock_key --> &(&port->lock)->rlock
[   18.287789]
[   18.287790]  Possible unsafe locking scenario:
[   18.287790]
[   18.287791]        CPU0                    CPU1
[   18.287792]        ----                    ----
[   18.287792]   lock(&(&port->lock)->rlock);
[   18.287794]                                lock(&port_lock_key);
[   18.287814]                                lock(&(&port->lock)->rlock);
[   18.287815]   lock(console_owner);
[   18.287817]
[   18.287818]  *** DEADLOCK ***
[   18.287818]
[   18.287819] 6 locks held by stop/202:
[   18.287820] #0: (ptrval) (&tty->ldisc_sem){++++}, at: ldsem_down_read (??:?)
[   18.287823] Enprytna#1: (ptrval) (&tty->atomic_write_lock){+.+.}, at: tty_write_lock (tty_io.c:?)
[   18.287826] Enprytna#2: (ptrval) (&o_tty->termios_rwsem/1){++++}, at: n_tty_write (n_tty.c:?)
[   18.287830] Enprytna#3: (ptrval) (&ldata->output_lock){+.+.}, at: process_output_block (n_tty.c:?)
[   18.287834] Enprytna#4: (ptrval) (&(&port->lock)->rlock){-...}, at: pty_write (pty.c:?)
[   18.287838] ArrowOS-Devices#5: (ptrval) (console_lock){+.+.}, at: console_trylock_spinning (printk.c:?)
[   18.287841]
[   18.287842] stack backtrace:
[   18.287843] CPU: 0 PID: 202 Comm: stop Not tainted 4.19.248-00165-g3d1f971aa81f Enprytna#1
[   18.287843] Call Trace:
[   18.287844] dump_stack (??:?)
[   18.287845] print_circular_bug.cold+0x78/0x8b
[   18.287846] check_prev_add+0x66a/0xd20
[   18.287847] check_prevs_add (lockdep.c:?)
[   18.287848] validate_chain+0x84a/0xe00
[   18.287848] __lock_acquire (lockdep.c:?)
[   18.287849] lock_acquire (??:?)
[   18.287850] ? console_unlock (??:?)
[   18.287851] console_unlock (??:?)
[   18.287851] ? console_unlock (??:?)
[   18.287852] ? native_save_fl (??:?)
[   18.287853] vprintk_emit (??:?)
[   18.287854] vprintk_default (??:?)
[   18.287855] vprintk_func (??:?)
[   18.287855] printk (??:?)
[   18.287856] get_random_u32 (??:?)
[   18.287857] ? shuffle_freelist (slub.c:?)
[   18.287858] shuffle_freelist (slub.c:?)
[   18.287858] ? page_address (??:?)
[   18.287859] allocate_slab (slub.c:?)
[   18.287860] new_slab (slub.c:?)
[   18.287861] ? pvclock_clocksource_read (??:?)
[   18.287862] ___slab_alloc+0x6d0/0xb20
[   18.287862] ? kvm_sched_clock_read (kvmclock.c:?)
[   18.287863] ? __slab_alloc+0xbc/0x2e0
[   18.287864] ? native_wbinvd (paravirt.c:?)
[   18.287865] __slab_alloc+0xd6/0x2e0
[   18.287865] __kmalloc (??:?)
[   18.287866] ? __lock_acquire (lockdep.c:?)
[   18.287867] ? tty_buffer_alloc (tty_buffer.c:?)
[   18.287868] tty_buffer_alloc (tty_buffer.c:?)
[   18.287869] __tty_buffer_request_room (tty_buffer.c:?)
[   18.287869] tty_insert_flip_string_fixed_flag (??:?)
[   18.287870] pty_write (pty.c:?)
[   18.287871] process_output_block (n_tty.c:?)
[   18.287872] n_tty_write (n_tty.c:?)
[   18.287873] ? print_dl_stats (??:?)
[   18.287874] ? n_tty_ioctl (n_tty.c:?)
[   18.287874] tty_write (tty_io.c:?)
[   18.287875] ? n_tty_ioctl (n_tty.c:?)
[   18.287876] ? tty_write_unlock (tty_io.c:?)
[   18.287877] __vfs_write (??:?)
[   18.287877] vfs_write (??:?)
[   18.287878] ? __fget_light (file.c:?)
[   18.287879] ksys_write (??:?)

Cc: Sergey Senozhatsky <[email protected]>
Cc: Qian Cai <[email protected]>
Cc: Lech Perczak <[email protected]>
Cc: Greg Kroah-Hartman <[email protected]>
Cc: Theodore Ts'o <[email protected]>
Cc: Sasha Levin <[email protected]>
Cc: Petr Mladek <[email protected]>
Cc: John Ogness <[email protected]>
Reported-by: kernel test robot <[email protected]>
Link: https://lore.kernel.org/lkml/Ytz+lo4zRQYG3JUR@xsang-OptiPlex-9020
Signed-off-by: Jason A. Donenfeld <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
garry-rogov pushed a commit to garry-rogov/android_kernel_xiaomi_ginkgo that referenced this issue Sep 5, 2022
commit 0c7d7cc2b4fe2e74ef8728f030f0f1674f9f6aee upstream.

There are two problems with the current code of memory_intersects:

First, it doesn't check whether the region (begin, end) falls inside the
region (virt, vend), that is (virt < begin && vend > end).

The second problem is if vend is equal to begin, it will return true but
this is wrong since vend (virt + size) is not the last address of the
memory region but (virt + size -1) is.  The wrong determination will
trigger the misreporting when the function check_for_illegal_area calls
memory_intersects to check if the dma region intersects with stext region.

The misreporting is as below (stext is at 0x80100000):
 WARNING: CPU: 0 PID: 77 at kernel/dma/debug.c:1073 check_for_illegal_area+0x130/0x168
 DMA-API: chipidea-usb2 e0002000.usb: device driver maps memory from kernel text or rodata [addr=800f0000] [len=65536]
 Modules linked in:
 CPU: 1 PID: 77 Comm: usb-storage Not tainted 5.19.0-yocto-standard ArrowOS-Devices#5
 Hardware name: Xilinx Zynq Platform
  unwind_backtrace from show_stack+0x18/0x1c
  show_stack from dump_stack_lvl+0x58/0x70
  dump_stack_lvl from __warn+0xb0/0x198
  __warn from warn_slowpath_fmt+0x80/0xb4
  warn_slowpath_fmt from check_for_illegal_area+0x130/0x168
  check_for_illegal_area from debug_dma_map_sg+0x94/0x368
  debug_dma_map_sg from __dma_map_sg_attrs+0x114/0x128
  __dma_map_sg_attrs from dma_map_sg_attrs+0x18/0x24
  dma_map_sg_attrs from usb_hcd_map_urb_for_dma+0x250/0x3b4
  usb_hcd_map_urb_for_dma from usb_hcd_submit_urb+0x194/0x214
  usb_hcd_submit_urb from usb_sg_wait+0xa4/0x118
  usb_sg_wait from usb_stor_bulk_transfer_sglist+0xa0/0xec
  usb_stor_bulk_transfer_sglist from usb_stor_bulk_srb+0x38/0x70
  usb_stor_bulk_srb from usb_stor_Bulk_transport+0x150/0x360
  usb_stor_Bulk_transport from usb_stor_invoke_transport+0x38/0x440
  usb_stor_invoke_transport from usb_stor_control_thread+0x1e0/0x238
  usb_stor_control_thread from kthread+0xf8/0x104
  kthread from ret_from_fork+0x14/0x2c

Refactor memory_intersects to fix the two problems above.

Before the 1d7db834a027e ("dma-debug: use memory_intersects()
directly"), memory_intersects is called only by printk_late_init:

printk_late_init -> init_section_intersects ->memory_intersects.

There were few places where memory_intersects was called.

When commit 1d7db834a027e ("dma-debug: use memory_intersects()
directly") was merged and CONFIG_DMA_API_DEBUG is enabled, the DMA
subsystem uses it to check for an illegal area and the calltrace above
is triggered.

[[email protected]: fix nearby comment typo]
Link: https://lkml.kernel.org/r/[email protected]
Fixes: 9795593 ("asm/sections: add helpers to check for section data")
Signed-off-by: Quanyang Wang <[email protected]>
Cc: Ard Biesheuvel <[email protected]>
Cc: Arnd Bergmann <[email protected]>
Cc: Thierry Reding <[email protected]>
Cc: <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
Enprytna pushed a commit to Enprytna/quicksilver_kernel_xiaomi_ginkgo that referenced this issue Sep 8, 2022
commit 0c7d7cc2b4fe2e74ef8728f030f0f1674f9f6aee upstream.

There are two problems with the current code of memory_intersects:

First, it doesn't check whether the region (begin, end) falls inside the
region (virt, vend), that is (virt < begin && vend > end).

The second problem is if vend is equal to begin, it will return true but
this is wrong since vend (virt + size) is not the last address of the
memory region but (virt + size -1) is.  The wrong determination will
trigger the misreporting when the function check_for_illegal_area calls
memory_intersects to check if the dma region intersects with stext region.

The misreporting is as below (stext is at 0x80100000):
 WARNING: CPU: 0 PID: 77 at kernel/dma/debug.c:1073 check_for_illegal_area+0x130/0x168
 DMA-API: chipidea-usb2 e0002000.usb: device driver maps memory from kernel text or rodata [addr=800f0000] [len=65536]
 Modules linked in:
 CPU: 1 PID: 77 Comm: usb-storage Not tainted 5.19.0-yocto-standard ArrowOS-Devices#5
 Hardware name: Xilinx Zynq Platform
  unwind_backtrace from show_stack+0x18/0x1c
  show_stack from dump_stack_lvl+0x58/0x70
  dump_stack_lvl from __warn+0xb0/0x198
  __warn from warn_slowpath_fmt+0x80/0xb4
  warn_slowpath_fmt from check_for_illegal_area+0x130/0x168
  check_for_illegal_area from debug_dma_map_sg+0x94/0x368
  debug_dma_map_sg from __dma_map_sg_attrs+0x114/0x128
  __dma_map_sg_attrs from dma_map_sg_attrs+0x18/0x24
  dma_map_sg_attrs from usb_hcd_map_urb_for_dma+0x250/0x3b4
  usb_hcd_map_urb_for_dma from usb_hcd_submit_urb+0x194/0x214
  usb_hcd_submit_urb from usb_sg_wait+0xa4/0x118
  usb_sg_wait from usb_stor_bulk_transfer_sglist+0xa0/0xec
  usb_stor_bulk_transfer_sglist from usb_stor_bulk_srb+0x38/0x70
  usb_stor_bulk_srb from usb_stor_Bulk_transport+0x150/0x360
  usb_stor_Bulk_transport from usb_stor_invoke_transport+0x38/0x440
  usb_stor_invoke_transport from usb_stor_control_thread+0x1e0/0x238
  usb_stor_control_thread from kthread+0xf8/0x104
  kthread from ret_from_fork+0x14/0x2c

Refactor memory_intersects to fix the two problems above.

Before the 1d7db834a027e ("dma-debug: use memory_intersects()
directly"), memory_intersects is called only by printk_late_init:

printk_late_init -> init_section_intersects ->memory_intersects.

There were few places where memory_intersects was called.

When commit 1d7db834a027e ("dma-debug: use memory_intersects()
directly") was merged and CONFIG_DMA_API_DEBUG is enabled, the DMA
subsystem uses it to check for an illegal area and the calltrace above
is triggered.

[[email protected]: fix nearby comment typo]
Link: https://lkml.kernel.org/r/[email protected]
Fixes: 9795593 ("asm/sections: add helpers to check for section data")
Signed-off-by: Quanyang Wang <[email protected]>
Cc: Ard Biesheuvel <[email protected]>
Cc: Arnd Bergmann <[email protected]>
Cc: Thierry Reding <[email protected]>
Cc: <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
adithya2306 pushed a commit that referenced this issue Sep 15, 2022
Patch series "lib/sort & lib/list_sort: faster and smaller", v2.

Because CONFIG_RETPOLINE has made indirect calls much more expensive, I
thought I'd try to reduce the number made by the library sort functions.

The first three patches apply to lib/sort.c.

Patch #1 is a simple optimization.  The built-in swap has special cases
for aligned 4- and 8-byte objects.  But those are almost never used;
most calls to sort() work on larger structures, which fall back to the
byte-at-a-time loop.  This generalizes them to aligned *multiples* of 4
and 8 bytes.  (If nothing else, it saves an awful lot of energy by not
thrashing the store buffers as much.)

Patch #2 grabs a juicy piece of low-hanging fruit.  I agree that nice
simple solid heapsort is preferable to more complex algorithms (sorry,
Andrey), but it's possible to implement heapsort with far fewer
comparisons (50% asymptotically, 25-40% reduction for realistic sizes)
than the way it's been done up to now.  And with some care, the code
ends up smaller, as well.  This is the "big win" patch.

Patch #3 adds the same sort of indirect call bypass that has been added
to the net code of late.  The great majority of the callers use the
builtin swap functions, so replace the indirect call to sort_func with a
(highly preditable) series of if() statements.  Rather surprisingly,
this decreased code size, as the swap functions were inlined and their
prologue & epilogue code eliminated.

lib/list_sort.c is a bit trickier, as merge sort is already close to
optimal, and we don't want to introduce triumphs of theory over
practicality like the Ford-Johnson merge-insertion sort.

Patch #4, without changing the algorithm, chops 32% off the code size
and removes the part[MAX_LIST_LENGTH+1] pointer array (and the
corresponding upper limit on efficiently sortable input size).

Patch #5 improves the algorithm.  The previous code is already optimal
for power-of-two (or slightly smaller) size inputs, but when the input
size is just over a power of 2, there's a very unbalanced final merge.

There are, in the literature, several algorithms which solve this, but
they all depend on the "breadth-first" merge order which was replaced by
commit 835cc0c with a more cache-friendly "depth-first" order.
Some hard thinking came up with a depth-first algorithm which defers
merges as little as possible while avoiding bad merges.  This saves
0.2*n compares, averaged over all sizes.

The code size increase is minimal (64 bytes on x86-64, reducing the net
savings to 26%), but the comments expanded significantly to document the
clever algorithm.

TESTING NOTES: I have some ugly user-space benchmarking code which I
used for testing before moving this code into the kernel.  Shout if you
want a copy.

I'm running this code right now, with CONFIG_TEST_SORT and
CONFIG_TEST_LIST_SORT, but I confess I haven't rebooted since the last
round of minor edits to quell checkpatch.  I figure there will be at
least one round of comments and final testing.

This patch (of 5):

Rather than having special-case swap functions for 4- and 8-byte
objects, special-case aligned multiples of 4 or 8 bytes.  This speeds up
most users of sort() by avoiding fallback to the byte copy loop.

Despite what ca96ab8 ("lib/sort: Add 64 bit swap function") claims,
very few users of sort() sort pointers (or pointer-sized objects); most
sort structures containing at least two words.  (E.g.
drivers/acpi/fan.c:acpi_fan_get_fps() sorts an array of 40-byte struct
acpi_fan_fps.)

The functions also got renamed to reflect the fact that they support
multiple words.  In the great tradition of bikeshedding, the names were
by far the most contentious issue during review of this patch series.

x86-64 code size 872 -> 886 bytes (+14)

With feedback from Andy Shevchenko, Rasmus Villemoes and Geert
Uytterhoeven.

Link: http://lkml.kernel.org/r/f24f932df3a7fa1973c1084154f1cea596bcf341.1552704200.git.lkml@sdf.org
Signed-off-by: George Spelvin <[email protected]>
Acked-by: Andrey Abramov <[email protected]>
Acked-by: Rasmus Villemoes <[email protected]>
Reviewed-by: Andy Shevchenko <[email protected]>
Cc: Rasmus Villemoes <[email protected]>
Cc: Geert Uytterhoeven <[email protected]>
Cc: Daniel Wagner <[email protected]>
Cc: Don Mullis <[email protected]>
Cc: Dave Chinner <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
Signed-off-by: Yousef Algadri <[email protected]>
Signed-off-by: Panchajanya1999 <[email protected]>
garry-rogov pushed a commit to garry-rogov/android_kernel_xiaomi_ginkgo that referenced this issue Sep 17, 2022
[ Upstream commit 84a53580c5d2138c7361c7c3eea5b31827e63b35 ]

The SRv6 layer allows defining HMAC data that can later be used to sign IPv6
Segment Routing Headers. This configuration is realised via netlink through
four attributes: SEG6_ATTR_HMACKEYID, SEG6_ATTR_SECRET, SEG6_ATTR_SECRETLEN and
SEG6_ATTR_ALGID. Because the SECRETLEN attribute is decoupled from the actual
length of the SECRET attribute, it is possible to provide invalid combinations
(e.g., secret = "", secretlen = 64). This case is not checked in the code and
with an appropriately crafted netlink message, an out-of-bounds read of up
to 64 bytes (max secret length) can occur past the skb end pointer and into
skb_shared_info:

Breakpoint 1, seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208
208		memcpy(hinfo->secret, secret, slen);
(gdb) bt
 #0  seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208
 #1  0xffffffff81e012e9 in genl_family_rcv_msg_doit (skb=skb@entry=0xffff88800b1f9f00, nlh=nlh@entry=0xffff88800b1b7600,
    extack=extack@entry=0xffffc90000ba7af0, ops=ops@entry=0xffffc90000ba7a80, hdrlen=4, net=0xffffffff84237580 <init_net>, family=<optimized out>,
    family=<optimized out>) at net/netlink/genetlink.c:731
 #2  0xffffffff81e01435 in genl_family_rcv_msg (extack=0xffffc90000ba7af0, nlh=0xffff88800b1b7600, skb=0xffff88800b1f9f00,
    family=0xffffffff82fef6c0 <seg6_genl_family>) at net/netlink/genetlink.c:775
 #3  genl_rcv_msg (skb=0xffff88800b1f9f00, nlh=0xffff88800b1b7600, extack=0xffffc90000ba7af0) at net/netlink/genetlink.c:792
 #4  0xffffffff81dfffc3 in netlink_rcv_skb (skb=skb@entry=0xffff88800b1f9f00, cb=cb@entry=0xffffffff81e01350 <genl_rcv_msg>)
    at net/netlink/af_netlink.c:2501
 ArrowOS-Devices#5  0xffffffff81e00919 in genl_rcv (skb=0xffff88800b1f9f00) at net/netlink/genetlink.c:803
 ArrowOS-Devices#6  0xffffffff81dff6ae in netlink_unicast_kernel (ssk=0xffff888010eec800, skb=0xffff88800b1f9f00, sk=0xffff888004aed000)
    at net/netlink/af_netlink.c:1319
 #7  netlink_unicast (ssk=ssk@entry=0xffff888010eec800, skb=skb@entry=0xffff88800b1f9f00, portid=portid@entry=0, nonblock=<optimized out>)
    at net/netlink/af_netlink.c:1345
 #8  0xffffffff81dff9a4 in netlink_sendmsg (sock=<optimized out>, msg=0xffffc90000ba7e48, len=<optimized out>) at net/netlink/af_netlink.c:1921
...
(gdb) p/x ((struct sk_buff *)0xffff88800b1f9f00)->head + ((struct sk_buff *)0xffff88800b1f9f00)->end
$1 = 0xffff88800b1b76c0
(gdb) p/x secret
$2 = 0xffff88800b1b76c0
(gdb) p slen
$3 = 64 '@'

The OOB data can then be read back from userspace by dumping HMAC state. This
commit fixes this by ensuring SECRETLEN cannot exceed the actual length of
SECRET.

Reported-by: Lucas Leong <[email protected]>
Tested: verified that EINVAL is correctly returned when secretlen > len(secret)
Fixes: 4f4853d ("ipv6: sr: implement API to control SR HMAC structure")
Signed-off-by: David Lebrun <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
WisnuArdhi28 pushed a commit to WisnuArdhi28/quicksilver_kernel_xiaomi_ginkgo that referenced this issue Oct 6, 2022
[ Upstream commit 84a53580c5d2138c7361c7c3eea5b31827e63b35 ]

The SRv6 layer allows defining HMAC data that can later be used to sign IPv6
Segment Routing Headers. This configuration is realised via netlink through
four attributes: SEG6_ATTR_HMACKEYID, SEG6_ATTR_SECRET, SEG6_ATTR_SECRETLEN and
SEG6_ATTR_ALGID. Because the SECRETLEN attribute is decoupled from the actual
length of the SECRET attribute, it is possible to provide invalid combinations
(e.g., secret = "", secretlen = 64). This case is not checked in the code and
with an appropriately crafted netlink message, an out-of-bounds read of up
to 64 bytes (max secret length) can occur past the skb end pointer and into
skb_shared_info:

Breakpoint 1, seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208
208		memcpy(hinfo->secret, secret, slen);
(gdb) bt
 #0  seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208
 Enprytna#1  0xffffffff81e012e9 in genl_family_rcv_msg_doit (skb=skb@entry=0xffff88800b1f9f00, nlh=nlh@entry=0xffff88800b1b7600,
    extack=extack@entry=0xffffc90000ba7af0, ops=ops@entry=0xffffc90000ba7a80, hdrlen=4, net=0xffffffff84237580 <init_net>, family=<optimized out>,
    family=<optimized out>) at net/netlink/genetlink.c:731
 Enprytna#2  0xffffffff81e01435 in genl_family_rcv_msg (extack=0xffffc90000ba7af0, nlh=0xffff88800b1b7600, skb=0xffff88800b1f9f00,
    family=0xffffffff82fef6c0 <seg6_genl_family>) at net/netlink/genetlink.c:775
 Enprytna#3  genl_rcv_msg (skb=0xffff88800b1f9f00, nlh=0xffff88800b1b7600, extack=0xffffc90000ba7af0) at net/netlink/genetlink.c:792
 Enprytna#4  0xffffffff81dfffc3 in netlink_rcv_skb (skb=skb@entry=0xffff88800b1f9f00, cb=cb@entry=0xffffffff81e01350 <genl_rcv_msg>)
    at net/netlink/af_netlink.c:2501
 ArrowOS-Devices#5  0xffffffff81e00919 in genl_rcv (skb=0xffff88800b1f9f00) at net/netlink/genetlink.c:803
 ArrowOS-Devices#6  0xffffffff81dff6ae in netlink_unicast_kernel (ssk=0xffff888010eec800, skb=0xffff88800b1f9f00, sk=0xffff888004aed000)
    at net/netlink/af_netlink.c:1319
 #7  netlink_unicast (ssk=ssk@entry=0xffff888010eec800, skb=skb@entry=0xffff88800b1f9f00, portid=portid@entry=0, nonblock=<optimized out>)
    at net/netlink/af_netlink.c:1345
 #8  0xffffffff81dff9a4 in netlink_sendmsg (sock=<optimized out>, msg=0xffffc90000ba7e48, len=<optimized out>) at net/netlink/af_netlink.c:1921
...
(gdb) p/x ((struct sk_buff *)0xffff88800b1f9f00)->head + ((struct sk_buff *)0xffff88800b1f9f00)->end
$1 = 0xffff88800b1b76c0
(gdb) p/x secret
$2 = 0xffff88800b1b76c0
(gdb) p slen
$3 = 64 '@'

The OOB data can then be read back from userspace by dumping HMAC state. This
commit fixes this by ensuring SECRETLEN cannot exceed the actual length of
SECRET.

Reported-by: Lucas Leong <[email protected]>
Tested: verified that EINVAL is correctly returned when secretlen > len(secret)
Fixes: 4f4853d ("ipv6: sr: implement API to control SR HMAC structure")
Signed-off-by: David Lebrun <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
Enprytna pushed a commit to Enprytna/quicksilver_kernel_xiaomi_ginkgo that referenced this issue Oct 27, 2022
commit 1b513f613731e2afc05550e8070d79fac80c661e upstream.

Syzkaller reported BUG_ON as follows:

------------[ cut here ]------------
kernel BUG at fs/ntfs/dir.c:86!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 3 PID: 758 Comm: a.out Not tainted 5.19.0-next-20220808 ArrowOS-Devices#5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:ntfs_lookup_inode_by_name+0xd11/0x2d10
Code: ff e9 b9 01 00 00 e8 1e fe d6 fe 48 8b 7d 98 49 8d 5d 07 e8 91 85 29 ff 48 c7 45 98 00 00 00 00 e9 5a fb ff ff e8 ff fd d6 fe <0f> 0b e8 f8 fd d6 fe 0f 0b e8 f1 fd d6 fe 48 8b b5 50 ff ff ff 4c
RSP: 0018:ffff888079607978 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000008000 RCX: 0000000000000000
RDX: ffff88807cf10000 RSI: ffffffff82a4a081 RDI: 0000000000000003
RBP: ffff888079607a70 R08: 0000000000000001 R09: ffff88807a6d01d7
R10: ffffed100f4da03a R11: 0000000000000000 R12: ffff88800f0fb110
R13: ffff88800f0ee000 R14: ffff88800f0fb000 R15: 0000000000000001
FS:  00007f33b63c7540(0000) GS:ffff888108580000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f33b635c090 CR3: 000000000f39e005 CR4: 0000000000770ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
 <TASK>
 load_system_files+0x1f7f/0x3620
 ntfs_fill_super+0xa01/0x1be0
 mount_bdev+0x36a/0x440
 ntfs_mount+0x3a/0x50
 legacy_get_tree+0xfb/0x210
 vfs_get_tree+0x8f/0x2f0
 do_new_mount+0x30a/0x760
 path_mount+0x4de/0x1880
 __x64_sys_mount+0x2b3/0x340
 do_syscall_64+0x38/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f33b62ff9ea
Code: 48 8b 0d a9 f4 0b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 76 f4 0b 00 f7 d8 64 89 01 48
RSP: 002b:00007ffd0c471aa8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f33b62ff9ea
RDX: 0000000020000000 RSI: 0000000020000100 RDI: 00007ffd0c471be0
RBP: 00007ffd0c471c60 R08: 00007ffd0c471ae0 R09: 00007ffd0c471c24
R10: 0000000000000000 R11: 0000000000000202 R12: 000055bac5afc160
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
 </TASK>
Modules linked in:
---[ end trace 0000000000000000 ]---

Fix this by adding sanity check on extended system files' directory inode
to ensure that it is directory, just like ntfs_extend_init() when mounting
ntfs3.

Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: ChenXiaoSong <[email protected]>
Cc: Anton Altaparmakov <[email protected]>
Cc: <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
Enprytna pushed a commit to Enprytna/quicksilver_kernel_xiaomi_ginkgo that referenced this issue Nov 19, 2022
commit 2b1299322016731d56807aa49254a5ea3080b6b3 upstream.

tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.

== Background ==

Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.

To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced.  eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.

== Problem ==

Here's a simplification of how guests are run on Linux' KVM:

void run_kvm_guest(void)
{
	// Prepare to run guest
	VMRESUME();
	// Clean up after guest runs
}

The execution flow for that would look something like this to the
processor:

1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()

Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:

* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.

* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".

IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.

However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in ArrowOS-Devices#6, it might speculatively use the address for the
instruction after the CALL in #3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.

Balanced CALL/RET instruction pairs such as in step ArrowOS-Devices#5 are not affected.

== Solution ==

The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e.,
eIBRS systems which enable legacy IBRS explicitly.

However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT
and most of them need a new mitigation.

Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT.

The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.

In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.

There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.

  [ bp: Massage, incorporate review comments from Andy Cooper. ]

Signed-off-by: Daniel Sneddon <[email protected]>
Co-developed-by: Pawan Gupta <[email protected]>
Signed-off-by: Pawan Gupta <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
[ bp: Adjust patch to account for kvm entry being in c ]
Signed-off-by: Suraj Jitindar Singh <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
Enprytna pushed a commit to Enprytna/quicksilver_kernel_xiaomi_ginkgo that referenced this issue Nov 19, 2022
commit 4abc99652812a2ddf932f137515d5c5a04723538 upstream.

Syzkaller managed to trigger concurrent calls to
kernfs_remove_by_name_ns() for the same file resulting in
a KASAN detected use-after-free. The race occurs when the root
node is freed during kernfs_drain().

To prevent this acquire an additional reference for the root
of the tree that is removed before calling __kernfs_remove().

Found by syzkaller with the following reproducer (slab_nomerge is
required):

syz_mount_image$ext4(0x0, &(0x7f0000000100)='./file0\x00', 0x100000, 0x0, 0x0, 0x0, 0x0)
r0 = openat(0xffffffffffffff9c, &(0x7f0000000080)='/proc/self/exe\x00', 0x0, 0x0)
close(r0)
pipe2(&(0x7f0000000140)={0xffffffffffffffff, <r1=>0xffffffffffffffff}, 0x800)
mount$9p_fd(0x0, &(0x7f0000000040)='./file0\x00', &(0x7f00000000c0), 0x408, &(0x7f0000000280)={'trans=fd,', {'rfdno', 0x3d, r0}, 0x2c, {'wfdno', 0x3d, r1}, 0x2c, {[{@cache_loose}, {@MMAP}, {@Loose}, {@Loose}, {@MMAP}], [{@Mask={'mask', 0x3d, '^MAY_EXEC'}}, {@FSMagic={'fsmagic', 0x3d, 0x10001}}, {@dont_hash}]}})

Sample report:

==================================================================
BUG: KASAN: use-after-free in kernfs_type include/linux/kernfs.h:335 [inline]
BUG: KASAN: use-after-free in kernfs_leftmost_descendant fs/kernfs/dir.c:1261 [inline]
BUG: KASAN: use-after-free in __kernfs_remove.part.0+0x843/0x960 fs/kernfs/dir.c:1369
Read of size 2 at addr ffff8880088807f0 by task syz-executor.2/857

CPU: 0 PID: 857 Comm: syz-executor.2 Not tainted 6.0.0-rc3-00363-g7726d4c3e60b ArrowOS-Devices#5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
 <TASK>
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0x6e/0x91 lib/dump_stack.c:106
 print_address_description mm/kasan/report.c:317 [inline]
 print_report.cold+0x5e/0x5e5 mm/kasan/report.c:433
 kasan_report+0xa3/0x130 mm/kasan/report.c:495
 kernfs_type include/linux/kernfs.h:335 [inline]
 kernfs_leftmost_descendant fs/kernfs/dir.c:1261 [inline]
 __kernfs_remove.part.0+0x843/0x960 fs/kernfs/dir.c:1369
 __kernfs_remove fs/kernfs/dir.c:1356 [inline]
 kernfs_remove_by_name_ns+0x108/0x190 fs/kernfs/dir.c:1589
 sysfs_slab_add+0x133/0x1e0 mm/slub.c:5943
 __kmem_cache_create+0x3e0/0x550 mm/slub.c:4899
 create_cache mm/slab_common.c:229 [inline]
 kmem_cache_create_usercopy+0x167/0x2a0 mm/slab_common.c:335
 p9_client_create+0xd4d/0x1190 net/9p/client.c:993
 v9fs_session_init+0x1e6/0x13c0 fs/9p/v9fs.c:408
 v9fs_mount+0xb9/0xbd0 fs/9p/vfs_super.c:126
 legacy_get_tree+0xf1/0x200 fs/fs_context.c:610
 vfs_get_tree+0x85/0x2e0 fs/super.c:1530
 do_new_mount fs/namespace.c:3040 [inline]
 path_mount+0x675/0x1d00 fs/namespace.c:3370
 do_mount fs/namespace.c:3383 [inline]
 __do_sys_mount fs/namespace.c:3591 [inline]
 __se_sys_mount fs/namespace.c:3568 [inline]
 __x64_sys_mount+0x282/0x300 fs/namespace.c:3568
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f725f983aed
Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f725f0f7028 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5
RAX: ffffffffffffffda RBX: 00007f725faa3f80 RCX: 00007f725f983aed
RDX: 00000000200000c0 RSI: 0000000020000040 RDI: 0000000000000000
RBP: 00007f725f9f419c R08: 0000000020000280 R09: 0000000000000000
R10: 0000000000000408 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000006 R14: 00007f725faa3f80 R15: 00007f725f0d7000
 </TASK>

Allocated by task 855:
 kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38
 kasan_set_track mm/kasan/common.c:45 [inline]
 set_alloc_info mm/kasan/common.c:437 [inline]
 __kasan_slab_alloc+0x66/0x80 mm/kasan/common.c:470
 kasan_slab_alloc include/linux/kasan.h:224 [inline]
 slab_post_alloc_hook mm/slab.h:727 [inline]
 slab_alloc_node mm/slub.c:3243 [inline]
 slab_alloc mm/slub.c:3251 [inline]
 __kmem_cache_alloc_lru mm/slub.c:3258 [inline]
 kmem_cache_alloc+0xbf/0x200 mm/slub.c:3268
 kmem_cache_zalloc include/linux/slab.h:723 [inline]
 __kernfs_new_node+0xd4/0x680 fs/kernfs/dir.c:593
 kernfs_new_node fs/kernfs/dir.c:655 [inline]
 kernfs_create_dir_ns+0x9c/0x220 fs/kernfs/dir.c:1010
 sysfs_create_dir_ns+0x127/0x290 fs/sysfs/dir.c:59
 create_dir lib/kobject.c:63 [inline]
 kobject_add_internal+0x24a/0x8d0 lib/kobject.c:223
 kobject_add_varg lib/kobject.c:358 [inline]
 kobject_init_and_add+0x101/0x160 lib/kobject.c:441
 sysfs_slab_add+0x156/0x1e0 mm/slub.c:5954
 __kmem_cache_create+0x3e0/0x550 mm/slub.c:4899
 create_cache mm/slab_common.c:229 [inline]
 kmem_cache_create_usercopy+0x167/0x2a0 mm/slab_common.c:335
 p9_client_create+0xd4d/0x1190 net/9p/client.c:993
 v9fs_session_init+0x1e6/0x13c0 fs/9p/v9fs.c:408
 v9fs_mount+0xb9/0xbd0 fs/9p/vfs_super.c:126
 legacy_get_tree+0xf1/0x200 fs/fs_context.c:610
 vfs_get_tree+0x85/0x2e0 fs/super.c:1530
 do_new_mount fs/namespace.c:3040 [inline]
 path_mount+0x675/0x1d00 fs/namespace.c:3370
 do_mount fs/namespace.c:3383 [inline]
 __do_sys_mount fs/namespace.c:3591 [inline]
 __se_sys_mount fs/namespace.c:3568 [inline]
 __x64_sys_mount+0x282/0x300 fs/namespace.c:3568
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd

Freed by task 857:
 kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38
 kasan_set_track+0x21/0x30 mm/kasan/common.c:45
 kasan_set_free_info+0x20/0x40 mm/kasan/generic.c:370
 ____kasan_slab_free mm/kasan/common.c:367 [inline]
 ____kasan_slab_free mm/kasan/common.c:329 [inline]
 __kasan_slab_free+0x108/0x190 mm/kasan/common.c:375
 kasan_slab_free include/linux/kasan.h:200 [inline]
 slab_free_hook mm/slub.c:1754 [inline]
 slab_free_freelist_hook mm/slub.c:1780 [inline]
 slab_free mm/slub.c:3534 [inline]
 kmem_cache_free+0x9c/0x340 mm/slub.c:3551
 kernfs_put.part.0+0x2b2/0x520 fs/kernfs/dir.c:547
 kernfs_put+0x42/0x50 fs/kernfs/dir.c:521
 __kernfs_remove.part.0+0x72d/0x960 fs/kernfs/dir.c:1407
 __kernfs_remove fs/kernfs/dir.c:1356 [inline]
 kernfs_remove_by_name_ns+0x108/0x190 fs/kernfs/dir.c:1589
 sysfs_slab_add+0x133/0x1e0 mm/slub.c:5943
 __kmem_cache_create+0x3e0/0x550 mm/slub.c:4899
 create_cache mm/slab_common.c:229 [inline]
 kmem_cache_create_usercopy+0x167/0x2a0 mm/slab_common.c:335
 p9_client_create+0xd4d/0x1190 net/9p/client.c:993
 v9fs_session_init+0x1e6/0x13c0 fs/9p/v9fs.c:408
 v9fs_mount+0xb9/0xbd0 fs/9p/vfs_super.c:126
 legacy_get_tree+0xf1/0x200 fs/fs_context.c:610
 vfs_get_tree+0x85/0x2e0 fs/super.c:1530
 do_new_mount fs/namespace.c:3040 [inline]
 path_mount+0x675/0x1d00 fs/namespace.c:3370
 do_mount fs/namespace.c:3383 [inline]
 __do_sys_mount fs/namespace.c:3591 [inline]
 __se_sys_mount fs/namespace.c:3568 [inline]
 __x64_sys_mount+0x282/0x300 fs/namespace.c:3568
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd

The buggy address belongs to the object at ffff888008880780
 which belongs to the cache kernfs_node_cache of size 128
The buggy address is located 112 bytes inside of
 128-byte region [ffff888008880780, ffff888008880800)

The buggy address belongs to the physical page:
page:00000000732833f8 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x8880
flags: 0x100000000000200(slab|node=0|zone=1)
raw: 0100000000000200 0000000000000000 dead000000000122 ffff888001147280
raw: 0000000000000000 0000000000150015 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
 ffff888008880680: fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb fb
 ffff888008880700: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
>ffff888008880780: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
                                                             ^
 ffff888008880800: fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb fb
 ffff888008880880: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
==================================================================

Acked-by: Tejun Heo <[email protected]>
Cc: stable <[email protected]> # -rc3
Signed-off-by: Christian A. Ehrhardt <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
adithya2306 pushed a commit that referenced this issue Dec 7, 2022
…for migration

Each cset (css_set) is pinned by its tasks. When we're moving tasks around
across csets for a migration, we need to hold the source and destination
csets to ensure that they don't go away while we're moving tasks about. This
is done by linking cset->mg_preload_node on either the
mgctx->preloaded_src_csets or mgctx->preloaded_dst_csets list. Using the
same cset->mg_preload_node for both the src and dst lists was deemed okay as
a cset can't be both the source and destination at the same time.

Unfortunately, this overloading becomes problematic when multiple tasks are
involved in a migration and some of them are identity noop migrations while
others are actually moving across cgroups. For example, this can happen with
the following sequence on cgroup1:

 #1> mkdir -p /sys/fs/cgroup/misc/a/b
 #2> echo $$ > /sys/fs/cgroup/misc/a/cgroup.procs
 #3> RUN_A_COMMAND_WHICH_CREATES_MULTIPLE_THREADS &
 #4> PID=$!
 #5> echo $PID > /sys/fs/cgroup/misc/a/b/tasks
 #6> echo $PID > /sys/fs/cgroup/misc/a/cgroup.procs

the process including the group leader back into a. In this final migration,
non-leader threads would be doing identity migration while the group leader
is doing an actual one.

After #3, let's say the whole process was in cset A, and that after #4, the
leader moves to cset B. Then, during #6, the following happens:

 1. cgroup_migrate_add_src() is called on B for the leader.

 2. cgroup_migrate_add_src() is called on A for the other threads.

 3. cgroup_migrate_prepare_dst() is called. It scans the src list.

 4. It notices that B wants to migrate to A, so it tries to A to the dst
    list but realizes that its ->mg_preload_node is already busy.

 5. and then it notices A wants to migrate to A as it's an identity
    migration, it culls it by list_del_init()'ing its ->mg_preload_node and
    putting references accordingly.

 6. The rest of migration takes place with B on the src list but nothing on
    the dst list.

This means that A isn't held while migration is in progress. If all tasks
leave A before the migration finishes and the incoming task pins it, the
cset will be destroyed leading to use-after-free.

This is caused by overloading cset->mg_preload_node for both src and dst
preload lists. We wanted to exclude the cset from the src list but ended up
inadvertently excluding it from the dst list too.

This patch fixes the issue by separating out cset->mg_preload_node into
->mg_src_preload_node and ->mg_dst_preload_node, so that the src and dst
preloadings don't interfere with each other.

Signed-off-by: Tejun Heo <[email protected]>
Reported-by: Mukesh Ojha <[email protected]>
Reported-by: shisiyuan <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Link: https://www.spinics.net/lists/cgroups/msg33313.html
Fixes: f817de9 ("cgroup: prepare migration path for unified hierarchy")
Cc: [email protected] # v3.16+
(cherry picked from commit 07fd5b6cdf3cc30bfde8fe0f644771688be04447
 https://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup.git for-5.19-fixes)
Bug: 235577024
Change-Id: Ieaf1c0c8fc23753570897fd6e48a54335ab939ce
Signed-off-by: Steve Muckle <[email protected]>
Git-commit: d1faa010ca160216a17435b81c642daf08ecbcbd
Git-repo: https://android.googlesource.com/kernel/common/
Signed-off-by: Srinivasarao Pathipati <[email protected]>
WisnuArdhi28 pushed a commit to WisnuArdhi28/quicksilver_kernel_xiaomi_ginkgo that referenced this issue Mar 10, 2023
…g the sock

[ Upstream commit 3cf7203ca620682165706f70a1b12b5194607dce ]

There is a race condition in vxlan that when deleting a vxlan device
during receiving packets, there is a possibility that the sock is
released after getting vxlan_sock vs from sk_user_data. Then in
later vxlan_ecn_decapsulate(), vxlan_get_sk_family() we will got
NULL pointer dereference. e.g.

   #0 [ffffa25ec6978a38] machine_kexec at ffffffff8c669757
   Enprytna#1 [ffffa25ec6978a90] __crash_kexec at ffffffff8c7c0a4d
   Enprytna#2 [ffffa25ec6978b58] crash_kexec at ffffffff8c7c1c48
   Enprytna#3 [ffffa25ec6978b60] oops_end at ffffffff8c627f2b
   Enprytna#4 [ffffa25ec6978b80] page_fault_oops at ffffffff8c678fcb
   ArrowOS-Devices#5 [ffffa25ec6978bd8] exc_page_fault at ffffffff8d109542
   ArrowOS-Devices#6 [ffffa25ec6978c00] asm_exc_page_fault at ffffffff8d200b62
      [exception RIP: vxlan_ecn_decapsulate+0x3b]
      RIP: ffffffffc1014e7b  RSP: ffffa25ec6978cb0  RFLAGS: 00010246
      RAX: 0000000000000008  RBX: ffff8aa000888000  RCX: 0000000000000000
      RDX: 000000000000000e  RSI: ffff8a9fc7ab803e  RDI: ffff8a9fd1168700
      RBP: ffff8a9fc7ab803e   R8: 0000000000700000   R9: 00000000000010ae
      R10: ffff8a9fcb748980  R11: 0000000000000000  R12: ffff8a9fd1168700
      R13: ffff8aa000888000  R14: 00000000002a0000  R15: 00000000000010ae
      ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
   #7 [ffffa25ec6978ce8] vxlan_rcv at ffffffffc10189cd [vxlan]
   #8 [ffffa25ec6978d90] udp_queue_rcv_one_skb at ffffffff8cfb6507
   #9 [ffffa25ec6978dc0] udp_unicast_rcv_skb at ffffffff8cfb6e45
  #10 [ffffa25ec6978dc8] __udp4_lib_rcv at ffffffff8cfb8807
  #11 [ffffa25ec6978e20] ip_protocol_deliver_rcu at ffffffff8cf76951
  #12 [ffffa25ec6978e48] ip_local_deliver at ffffffff8cf76bde
  #13 [ffffa25ec6978ea0] __netif_receive_skb_one_core at ffffffff8cecde9b
  #14 [ffffa25ec6978ec8] process_backlog at ffffffff8cece139
  #15 [ffffa25ec6978f00] __napi_poll at ffffffff8ceced1a
  #16 [ffffa25ec6978f28] net_rx_action at ffffffff8cecf1f3
  #17 [ffffa25ec6978fa0] __softirqentry_text_start at ffffffff8d4000ca
  #18 [ffffa25ec6978ff0] do_softirq at ffffffff8c6fbdc3

Reproducer: https://github.com/Mellanox/ovs-tests/blob/master/test-ovs-vxlan-remove-tunnel-during-traffic.sh

Fix this by waiting for all sk_user_data reader to finish before
releasing the sock.

Reported-by: Jianlin Shi <[email protected]>
Suggested-by: Jakub Sitnicki <[email protected]>
Fixes: 6a93cc9 ("udp-tunnel: Add a few more UDP tunnel APIs")
Signed-off-by: Hangbin Liu <[email protected]>
Reviewed-by: Jiri Pirko <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
WisnuArdhi28 pushed a commit to WisnuArdhi28/quicksilver_kernel_xiaomi_ginkgo that referenced this issue Mar 10, 2023
commit 341097ee53573e06ab9fc675d96a052385b851fa upstream.

There's a crash in mempool_free when running the lvm test
shell/lvchange-rebuild-raid.sh.

The reason for the crash is this:
* super_written calls atomic_dec_and_test(&mddev->pending_writes) and
  wake_up(&mddev->sb_wait). Then it calls rdev_dec_pending(rdev, mddev)
  and bio_put(bio).
* so, the process that waited on sb_wait and that is woken up is racing
  with bio_put(bio).
* if the process wins the race, it calls bioset_exit before bio_put(bio)
  is executed.
* bio_put(bio) attempts to free a bio into a destroyed bio set - causing
  a crash in mempool_free.

We fix this bug by moving bio_put before atomic_dec_and_test.

We also move rdev_dec_pending before atomic_dec_and_test as suggested by
Neil Brown.

The function md_end_flush has a similar bug - we must call bio_put before
we decrement the number of in-progress bios.

 BUG: kernel NULL pointer dereference, address: 0000000000000000
 #PF: supervisor write access in kernel mode
 #PF: error_code(0x0002) - not-present page
 PGD 11557f0067 P4D 11557f0067 PUD 0
 Oops: 0002 [Enprytna#1] PREEMPT SMP
 CPU: 0 PID: 73 Comm: kworker/0:1 Not tainted 6.1.0-rc3 ArrowOS-Devices#5
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
 Workqueue: kdelayd flush_expired_bios [dm_delay]
 RIP: 0010:mempool_free+0x47/0x80
 Code: 48 89 ef 5b 5d ff e0 f3 c3 48 89 f7 e8 32 45 3f 00 48 63 53 08 48 89 c6 3b 53 04 7d 2d 48 8b 43 10 8d 4a 01 48 89 df 89 4b 08 <48> 89 2c d0 e8 b0 45 3f 00 48 8d 7b 30 5b 5d 31 c9 ba 01 00 00 00
 RSP: 0018:ffff88910036bda8 EFLAGS: 00010093
 RAX: 0000000000000000 RBX: ffff8891037b65d8 RCX: 0000000000000001
 RDX: 0000000000000000 RSI: 0000000000000202 RDI: ffff8891037b65d8
 RBP: ffff8891447ba240 R08: 0000000000012908 R09: 00000000003d0900
 R10: 0000000000000000 R11: 0000000000173544 R12: ffff889101a14000
 R13: ffff8891562ac300 R14: ffff889102b41440 R15: ffffe8ffffa00d05
 FS:  0000000000000000(0000) GS:ffff88942fa00000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 0000000000000000 CR3: 0000001102e99000 CR4: 00000000000006b0
 Call Trace:
  <TASK>
  clone_endio+0xf4/0x1c0 [dm_mod]
  clone_endio+0xf4/0x1c0 [dm_mod]
  __submit_bio+0x76/0x120
  submit_bio_noacct_nocheck+0xb6/0x2a0
  flush_expired_bios+0x28/0x2f [dm_delay]
  process_one_work+0x1b4/0x300
  worker_thread+0x45/0x3e0
  ? rescuer_thread+0x380/0x380
  kthread+0xc2/0x100
  ? kthread_complete_and_exit+0x20/0x20
  ret_from_fork+0x1f/0x30
  </TASK>
 Modules linked in: brd dm_delay dm_raid dm_mod af_packet uvesafb cfbfillrect cfbimgblt cn cfbcopyarea fb font fbdev tun autofs4 binfmt_misc configfs ipv6 virtio_rng virtio_balloon rng_core virtio_net pcspkr net_failover failover qemu_fw_cfg button mousedev raid10 raid456 libcrc32c async_raid6_recov async_memcpy async_pq raid6_pq async_xor xor async_tx raid1 raid0 md_mod sd_mod t10_pi crc64_rocksoft crc64 virtio_scsi scsi_mod evdev psmouse bsg scsi_common [last unloaded: brd]
 CR2: 0000000000000000
 ---[ end trace 0000000000000000 ]---

Signed-off-by: Mikulas Patocka <[email protected]>
Cc: [email protected]
Signed-off-by: Song Liu <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
WisnuArdhi28 pushed a commit to WisnuArdhi28/quicksilver_kernel_xiaomi_ginkgo that referenced this issue Mar 10, 2023
[ Upstream commit b18cba09e374637a0a3759d856a6bca94c133952 ]

Commit 9130b8d ("SUNRPC: allow for upcalls for the same uid
but different gss service") introduced `auth` argument to
__gss_find_upcall(), but in gss_pipe_downcall() it was left as NULL
since it (and auth->service) was not (yet) determined.

When multiple upcalls with the same uid and different service are
ongoing, it could happen that __gss_find_upcall(), which returns the
first match found in the pipe->in_downcall list, could not find the
correct gss_msg corresponding to the downcall we are looking for.
Moreover, it might return a msg which is not sent to rpc.gssd yet.

We could see mount.nfs process hung in D state with multiple mount.nfs
are executed in parallel.  The call trace below is of CentOS 7.9
kernel-3.10.0-1160.24.1.el7.x86_64 but we observed the same hang w/
elrepo kernel-ml-6.0.7-1.el7.

PID: 71258  TASK: ffff91ebd4be0000  CPU: 36  COMMAND: "mount.nfs"
 #0 [ffff9203ca3234f8] __schedule at ffffffffa3b8899f
 Enprytna#1 [ffff9203ca323580] schedule at ffffffffa3b88eb9
 Enprytna#2 [ffff9203ca323590] gss_cred_init at ffffffffc0355818 [auth_rpcgss]
 Enprytna#3 [ffff9203ca323658] rpcauth_lookup_credcache at ffffffffc0421ebc
[sunrpc]
 Enprytna#4 [ffff9203ca3236d8] gss_lookup_cred at ffffffffc0353633 [auth_rpcgss]
 ArrowOS-Devices#5 [ffff9203ca3236e8] rpcauth_lookupcred at ffffffffc0421581 [sunrpc]
 ArrowOS-Devices#6 [ffff9203ca323740] rpcauth_refreshcred at ffffffffc04223d3 [sunrpc]
 #7 [ffff9203ca3237a0] call_refresh at ffffffffc04103dc [sunrpc]
 #8 [ffff9203ca3237b8] __rpc_execute at ffffffffc041e1c9 [sunrpc]
 #9 [ffff9203ca323820] rpc_execute at ffffffffc0420a48 [sunrpc]

The scenario is like this. Let's say there are two upcalls for
services A and B, A -> B in pipe->in_downcall, B -> A in pipe->pipe.

When rpc.gssd reads pipe to get the upcall msg corresponding to
service B from pipe->pipe and then writes the response, in
gss_pipe_downcall the msg corresponding to service A will be picked
because only uid is used to find the msg and it is before the one for
B in pipe->in_downcall.  And the process waiting for the msg
corresponding to service A will be woken up.

Actual scheduing of that process might be after rpc.gssd processes the
next msg.  In rpc_pipe_generic_upcall it clears msg->errno (for A).
The process is scheduled to see gss_msg->ctx == NULL and
gss_msg->msg.errno == 0, therefore it cannot break the loop in
gss_create_upcall and is never woken up after that.

This patch adds a simple check to ensure that a msg which is not
sent to rpc.gssd yet is not chosen as the matching upcall upon
receiving a downcall.

Signed-off-by: minoura makoto <[email protected]>
Signed-off-by: Hiroshi Shimamoto <[email protected]>
Tested-by: Hiroshi Shimamoto <[email protected]>
Cc: Trond Myklebust <[email protected]>
Fixes: 9130b8d ("SUNRPC: allow for upcalls for same uid but different gss service")
Signed-off-by: Trond Myklebust <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
WisnuArdhi28 pushed a commit to WisnuArdhi28/quicksilver_kernel_xiaomi_ginkgo that referenced this issue Mar 10, 2023
[ Upstream commit 6c4ca03bd890566d873e3593b32d034bf2f5a087 ]

During EEH error injection testing, a deadlock was encountered in the tg3
driver when tg3_io_error_detected() was attempting to cancel outstanding
reset tasks:

crash> foreach UN bt
...
PID: 159    TASK: c0000000067c6000  CPU: 8   COMMAND: "eehd"
...
 ArrowOS-Devices#5 [c00000000681f990] __cancel_work_timer at c00000000019fd18
 ArrowOS-Devices#6 [c00000000681fa30] tg3_io_error_detected at c00800000295f098 [tg3]
 #7 [c00000000681faf0] eeh_report_error at c00000000004e25c
...

PID: 290    TASK: c000000036e5f800  CPU: 6   COMMAND: "kworker/6:1"
...
 Enprytna#4 [c00000003721fbc0] rtnl_lock at c000000000c940d8
 ArrowOS-Devices#5 [c00000003721fbe0] tg3_reset_task at c008000002969358 [tg3]
 ArrowOS-Devices#6 [c00000003721fc60] process_one_work at c00000000019e5c4
...

PID: 296    TASK: c000000037a65800  CPU: 21  COMMAND: "kworker/21:1"
...
 Enprytna#4 [c000000037247bc0] rtnl_lock at c000000000c940d8
 ArrowOS-Devices#5 [c000000037247be0] tg3_reset_task at c008000002969358 [tg3]
 ArrowOS-Devices#6 [c000000037247c60] process_one_work at c00000000019e5c4
...

PID: 655    TASK: c000000036f49000  CPU: 16  COMMAND: "kworker/16:2"
...:1

 Enprytna#4 [c0000000373ebbc0] rtnl_lock at c000000000c940d8
 ArrowOS-Devices#5 [c0000000373ebbe0] tg3_reset_task at c008000002969358 [tg3]
 ArrowOS-Devices#6 [c0000000373ebc60] process_one_work at c00000000019e5c4
...

Code inspection shows that both tg3_io_error_detected() and
tg3_reset_task() attempt to acquire the RTNL lock at the beginning of
their code blocks.  If tg3_reset_task() should happen to execute between
the times when tg3_io_error_deteced() acquires the RTNL lock and
tg3_reset_task_cancel() is called, a deadlock will occur.

Moving tg3_reset_task_cancel() call earlier within the code block, prior
to acquiring RTNL, prevents this from happening, but also exposes another
deadlock issue where tg3_reset_task() may execute AFTER
tg3_io_error_detected() has executed:

crash> foreach UN bt
PID: 159    TASK: c0000000067d2000  CPU: 9   COMMAND: "eehd"
...
 Enprytna#4 [c000000006867a60] rtnl_lock at c000000000c940d8
 ArrowOS-Devices#5 [c000000006867a80] tg3_io_slot_reset at c0080000026c2ea8 [tg3]
 ArrowOS-Devices#6 [c000000006867b00] eeh_report_reset at c00000000004de88
...
PID: 363    TASK: c000000037564000  CPU: 6   COMMAND: "kworker/6:1"
...
 Enprytna#3 [c000000036c1bb70] msleep at c000000000259e6c
 Enprytna#4 [c000000036c1bba0] napi_disable at c000000000c6b848
 ArrowOS-Devices#5 [c000000036c1bbe0] tg3_reset_task at c0080000026d942c [tg3]
 ArrowOS-Devices#6 [c000000036c1bc60] process_one_work at c00000000019e5c4
...

This issue can be avoided by aborting tg3_reset_task() if EEH error
recovery is already in progress.

Fixes: db84bf4 ("tg3: tg3_reset_task() needs to use rtnl_lock to synchronize")
Signed-off-by: David Christensen <[email protected]>
Reviewed-by: Pavan Chebbi <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
Whot1966 pushed a commit to Whot1966/kernel_xiaomi_ginkgo that referenced this issue Jul 14, 2023
commit 59f92868176f191eefde70d284bdfc1ed76a84bc upstream.

When reading the voltage:

$ cat /sys/bus/iio/devices/iio\:device0/in_voltage0_raw

Lockdep complains:

[  153.910616] ======================================================
[  153.916918] WARNING: possible circular locking dependency detected
[  153.923221] 5.14.0+ ArrowOS-Devices#5 Not tainted
[  153.926692] ------------------------------------------------------
[  153.932992] cat/717 is trying to acquire lock:
[  153.937525] c2585358 (&indio_dev->mlock){+.+.}-{3:3}, at: iio_device_claim_direct_mode+0x28/0x44
[  153.946541]
               but task is already holding lock:
[  153.952487] c2585860 (&dln2->mutex){+.+.}-{3:3}, at: dln2_adc_read_raw+0x94/0x2bc [dln2_adc]
[  153.961152]
               which lock already depends on the new lock.

Fix this by not calling into the iio core underneath the dln2->mutex lock.

Fixes: 7c0299e ("iio: adc: Add support for DLN2 ADC")
Cc: Jack Andersen <[email protected]>
Signed-off-by: Noralf Trønnes <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Cc: <[email protected]>
Signed-off-by: Jonathan Cameron <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
Whot1966 pushed a commit to Whot1966/kernel_xiaomi_ginkgo that referenced this issue Jul 14, 2023
commit fd79a0cbf0b2e34bcc45b13acf962e2032a82203 upstream.

When kmalloc in nfc_genl_dump_devices() fails then
nfc_genl_dump_devices_done() segfaults as below

KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
CPU: 0 PID: 25 Comm: kworker/0:1 Not tainted 5.16.0-rc4-01180-g2a987e65025e-dirty ArrowOS-Devices#5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-6.fc35 04/01/2014
Workqueue: events netlink_sock_destruct_work
RIP: 0010:klist_iter_exit+0x26/0x80
Call Trace:
<TASK>
class_dev_iter_exit+0x15/0x20
nfc_genl_dump_devices_done+0x3b/0x50
genl_lock_done+0x84/0xd0
netlink_sock_destruct+0x8f/0x270
__sk_destruct+0x64/0x3b0
sk_destruct+0xa8/0xd0
__sk_free+0x2e8/0x3d0
sk_free+0x51/0x90
netlink_sock_destruct_work+0x1c/0x20
process_one_work+0x411/0x710
worker_thread+0x6fd/0xa80

Link: https://syzkaller.appspot.com/bug?id=fc0fa5a53db9edd261d56e74325419faf18bd0df
Reported-by: [email protected]
Signed-off-by: Tadeusz Struk <[email protected]>
Reviewed-by: Krzysztof Kozlowski <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
Whot1966 pushed a commit to Whot1966/kernel_xiaomi_ginkgo that referenced this issue Jul 15, 2023
[ Upstream commit ef27324e2cb7bb24542d6cb2571740eefe6b00dc ]

Our detector found a concurrent use-after-free bug when detaching an
NCI device. The main reason for this bug is the unexpected scheduling
between the used delayed mechanism (timer and workqueue).

The race can be demonstrated below:

Thread-1                           Thread-2
                                 | nci_dev_up()
                                 |   nci_open_device()
                                 |     __nci_request(nci_reset_req)
                                 |       nci_send_cmd
                                 |         queue_work(cmd_work)
nci_unregister_device()          |
  nci_close_device()             | ...
    del_timer_sync(cmd_timer)[1] |
...                              | Worker
nci_free_device()                | nci_cmd_work()
  kfree(ndev)[3]                 |   mod_timer(cmd_timer)[2]

In short, the cleanup routine thought that the cmd_timer has already
been detached by [1] but the mod_timer can re-attach the timer [2], even
it is already released [3], resulting in UAF.

This UAF is easy to trigger, crash trace by POC is like below

[   66.703713] ==================================================================
[   66.703974] BUG: KASAN: use-after-free in enqueue_timer+0x448/0x490
[   66.703974] Write of size 8 at addr ffff888009fb7058 by task kworker/u4:1/33
[   66.703974]
[   66.703974] CPU: 1 PID: 33 Comm: kworker/u4:1 Not tainted 5.18.0-rc2 ArrowOS-Devices#5
[   66.703974] Workqueue: nfc2_nci_cmd_wq nci_cmd_work
[   66.703974] Call Trace:
[   66.703974]  <TASK>
[   66.703974]  dump_stack_lvl+0x57/0x7d
[   66.703974]  print_report.cold+0x5e/0x5db
[   66.703974]  ? enqueue_timer+0x448/0x490
[   66.703974]  kasan_report+0xbe/0x1c0
[   66.703974]  ? enqueue_timer+0x448/0x490
[   66.703974]  enqueue_timer+0x448/0x490
[   66.703974]  __mod_timer+0x5e6/0xb80
[   66.703974]  ? mark_held_locks+0x9e/0xe0
[   66.703974]  ? try_to_del_timer_sync+0xf0/0xf0
[   66.703974]  ? lockdep_hardirqs_on_prepare+0x17b/0x410
[   66.703974]  ? queue_work_on+0x61/0x80
[   66.703974]  ? lockdep_hardirqs_on+0xbf/0x130
[   66.703974]  process_one_work+0x8bb/0x1510
[   66.703974]  ? lockdep_hardirqs_on_prepare+0x410/0x410
[   66.703974]  ? pwq_dec_nr_in_flight+0x230/0x230
[   66.703974]  ? rwlock_bug.part.0+0x90/0x90
[   66.703974]  ? _raw_spin_lock_irq+0x41/0x50
[   66.703974]  worker_thread+0x575/0x1190
[   66.703974]  ? process_one_work+0x1510/0x1510
[   66.703974]  kthread+0x2a0/0x340
[   66.703974]  ? kthread_complete_and_exit+0x20/0x20
[   66.703974]  ret_from_fork+0x22/0x30
[   66.703974]  </TASK>
[   66.703974]
[   66.703974] Allocated by task 267:
[   66.703974]  kasan_save_stack+0x1e/0x40
[   66.703974]  __kasan_kmalloc+0x81/0xa0
[   66.703974]  nci_allocate_device+0xd3/0x390
[   66.703974]  nfcmrvl_nci_register_dev+0x183/0x2c0
[   66.703974]  nfcmrvl_nci_uart_open+0xf2/0x1dd
[   66.703974]  nci_uart_tty_ioctl+0x2c3/0x4a0
[   66.703974]  tty_ioctl+0x764/0x1310
[   66.703974]  __x64_sys_ioctl+0x122/0x190
[   66.703974]  do_syscall_64+0x3b/0x90
[   66.703974]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[   66.703974]
[   66.703974] Freed by task 406:
[   66.703974]  kasan_save_stack+0x1e/0x40
[   66.703974]  kasan_set_track+0x21/0x30
[   66.703974]  kasan_set_free_info+0x20/0x30
[   66.703974]  __kasan_slab_free+0x108/0x170
[   66.703974]  kfree+0xb0/0x330
[   66.703974]  nfcmrvl_nci_unregister_dev+0x90/0xd0
[   66.703974]  nci_uart_tty_close+0xdf/0x180
[   66.703974]  tty_ldisc_kill+0x73/0x110
[   66.703974]  tty_ldisc_hangup+0x281/0x5b0
[   66.703974]  __tty_hangup.part.0+0x431/0x890
[   66.703974]  tty_release+0x3a8/0xc80
[   66.703974]  __fput+0x1f0/0x8c0
[   66.703974]  task_work_run+0xc9/0x170
[   66.703974]  exit_to_user_mode_prepare+0x194/0x1a0
[   66.703974]  syscall_exit_to_user_mode+0x19/0x50
[   66.703974]  do_syscall_64+0x48/0x90
[   66.703974]  entry_SYSCALL_64_after_hwframe+0x44/0xae

To fix the UAF, this patch adds flush_workqueue() to ensure the
nci_cmd_work is finished before the following del_timer_sync.
This combination will promise the timer is actually detached.

Fixes: 6a2968a ("NFC: basic NCI protocol implementation")
Signed-off-by: Lin Ma <[email protected]>
Reviewed-by: Krzysztof Kozlowski <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
Whot1966 pushed a commit to Whot1966/kernel_xiaomi_ginkgo that referenced this issue Jul 15, 2023
[ Upstream commit af68656d66eda219b7f55ce8313a1da0312c79e1 ]

While handling PCI errors (AER flow) driver tries to
disable NAPI [napi_disable()] after NAPI is deleted
[__netif_napi_del()] which causes unexpected system
hang/crash.

System message log shows the following:
=======================================
[ 3222.537510] EEH: Detected PCI bus error on PHB#384-PE#800000 [ 3222.537511] EEH: This PCI device has failed 2 times in the last hour and will be permanently disabled after 5 failures.
[ 3222.537512] EEH: Notify device drivers to shutdown [ 3222.537513] EEH: Beginning: 'error_detected(IO frozen)'
[ 3222.537514] EEH: PE#800000 (PCI 0384:80:00.0): Invoking
bnx2x->error_detected(IO frozen)
[ 3222.537516] bnx2x: [bnx2x_io_error_detected:14236(eth14)]IO error detected [ 3222.537650] EEH: PE#800000 (PCI 0384:80:00.0): bnx2x driver reports:
'need reset'
[ 3222.537651] EEH: PE#800000 (PCI 0384:80:00.1): Invoking
bnx2x->error_detected(IO frozen)
[ 3222.537651] bnx2x: [bnx2x_io_error_detected:14236(eth13)]IO error detected [ 3222.537729] EEH: PE#800000 (PCI 0384:80:00.1): bnx2x driver reports:
'need reset'
[ 3222.537729] EEH: Finished:'error_detected(IO frozen)' with aggregate recovery state:'need reset'
[ 3222.537890] EEH: Collect temporary log [ 3222.583481] EEH: of node=0384:80:00.0 [ 3222.583519] EEH: PCI device/vendor: 168e14e4 [ 3222.583557] EEH: PCI cmd/status register: 00100140 [ 3222.583557] EEH: PCI-E capabilities and status follow:
[ 3222.583744] EEH: PCI-E 00: 00020010 012c8da2 00095d5e 00455c82 [ 3222.583892] EEH: PCI-E 10: 10820000 00000000 00000000 00000000 [ 3222.583893] EEH: PCI-E 20: 00000000 [ 3222.583893] EEH: PCI-E AER capability register set follows:
[ 3222.584079] EEH: PCI-E AER 00: 13c10001 00000000 00000000 00062030 [ 3222.584230] EEH: PCI-E AER 10: 00002000 000031c0 000001e0 00000000 [ 3222.584378] EEH: PCI-E AER 20: 00000000 00000000 00000000 00000000 [ 3222.584416] EEH: PCI-E AER 30: 00000000 00000000 [ 3222.584416] EEH: of node=0384:80:00.1 [ 3222.584454] EEH: PCI device/vendor: 168e14e4 [ 3222.584491] EEH: PCI cmd/status register: 00100140 [ 3222.584492] EEH: PCI-E capabilities and status follow:
[ 3222.584677] EEH: PCI-E 00: 00020010 012c8da2 00095d5e 00455c82 [ 3222.584825] EEH: PCI-E 10: 10820000 00000000 00000000 00000000 [ 3222.584826] EEH: PCI-E 20: 00000000 [ 3222.584826] EEH: PCI-E AER capability register set follows:
[ 3222.585011] EEH: PCI-E AER 00: 13c10001 00000000 00000000 00062030 [ 3222.585160] EEH: PCI-E AER 10: 00002000 000031c0 000001e0 00000000 [ 3222.585309] EEH: PCI-E AER 20: 00000000 00000000 00000000 00000000 [ 3222.585347] EEH: PCI-E AER 30: 00000000 00000000 [ 3222.586872] RTAS: event: 5, Type: Platform Error (224), Severity: 2 [ 3222.586873] EEH: Reset without hotplug activity [ 3224.762767] EEH: Beginning: 'slot_reset'
[ 3224.762770] EEH: PE#800000 (PCI 0384:80:00.0): Invoking
bnx2x->slot_reset()
[ 3224.762771] bnx2x: [bnx2x_io_slot_reset:14271(eth14)]IO slot reset initializing...
[ 3224.762887] bnx2x 0384:80:00.0: enabling device (0140 -> 0142) [ 3224.768157] bnx2x: [bnx2x_io_slot_reset:14287(eth14)]IO slot reset
--> driver unload

Uninterruptible tasks
=====================
crash> ps | grep UN
     213      2  11  c000000004c89e00  UN   0.0       0      0  [eehd]
     215      2   0  c000000004c80000  UN   0.0       0      0
[kworker/0:2]
    2196      1  28  c000000004504f00  UN   0.1   15936  11136  wickedd
    4287      1   9  c00000020d076800  UN   0.0    4032   3008  agetty
    4289      1  20  c00000020d056680  UN   0.0    7232   3840  agetty
   32423      2  26  c00000020038c580  UN   0.0       0      0
[kworker/26:3]
   32871   4241  27  c0000002609ddd00  UN   0.1   18624  11648  sshd
   32920  10130  16  c00000027284a100  UN   0.1   48512  12608  sendmail
   33092  32987   0  c000000205218b00  UN   0.1   48512  12608  sendmail
   33154   4567  16  c000000260e51780  UN   0.1   48832  12864  pickup
   33209   4241  36  c000000270cb6500  UN   0.1   18624  11712  sshd
   33473  33283   0  c000000205211480  UN   0.1   48512  12672  sendmail
   33531   4241  37  c00000023c902780  UN   0.1   18624  11648  sshd

EEH handler hung while bnx2x sleeping and holding RTNL lock
===========================================================
crash> bt 213
PID: 213    TASK: c000000004c89e00  CPU: 11  COMMAND: "eehd"
  #0 [c000000004d477e0] __schedule at c000000000c70808
  #1 [c000000004d478b0] schedule at c000000000c70ee0
  ArrowOS-Devices#2 [c000000004d478e0] schedule_timeout at c000000000c76dec
  ArrowOS-Devices#3 [c000000004d479c0] msleep at c0000000002120cc
  ArrowOS-Devices#4 [c000000004d479f0] napi_disable at c000000000a06448
                                        ^^^^^^^^^^^^^^^^
  ArrowOS-Devices#5 [c000000004d47a30] bnx2x_netif_stop at c0080000018dba94 [bnx2x]
  ArrowOS-Devices#6 [c000000004d47a60] bnx2x_io_slot_reset at c0080000018a551c [bnx2x]
  #7 [c000000004d47b20] eeh_report_reset at c00000000004c9bc
  #8 [c000000004d47b90] eeh_pe_report at c00000000004d1a8
  #9 [c000000004d47c40] eeh_handle_normal_event at c00000000004da64

And the sleeping source code
============================
crash> dis -ls c000000000a06448
FILE: ../net/core/dev.c
LINE: 6702

   6697  {
   6698          might_sleep();
   6699          set_bit(NAPI_STATE_DISABLE, &n->state);
   6700
   6701          while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
* 6702                  msleep(1);
   6703          while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
   6704                  msleep(1);
   6705
   6706          hrtimer_cancel(&n->timer);
   6707
   6708          clear_bit(NAPI_STATE_DISABLE, &n->state);
   6709  }

EEH calls into bnx2x twice based on the system log above, first through
bnx2x_io_error_detected() and then bnx2x_io_slot_reset(), and executes
the following call chains:

bnx2x_io_error_detected()
  +-> bnx2x_eeh_nic_unload()
       +-> bnx2x_del_all_napi()
            +-> __netif_napi_del()

bnx2x_io_slot_reset()
  +-> bnx2x_netif_stop()
       +-> bnx2x_napi_disable()
            +->napi_disable()

Fix this by correcting the sequence of NAPI APIs usage,
that is delete the NAPI after disabling it.

Fixes: 7fa6f34 ("bnx2x: AER revised")
Reported-by: David Christensen <[email protected]>
Tested-by: David Christensen <[email protected]>
Signed-off-by: Manish Chopra <[email protected]>
Signed-off-by: Ariel Elior <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
Whot1966 pushed a commit to Whot1966/kernel_xiaomi_ginkgo that referenced this issue Aug 13, 2023
[ Upstream commit ef27324e2cb7bb24542d6cb2571740eefe6b00dc ]

Our detector found a concurrent use-after-free bug when detaching an
NCI device. The main reason for this bug is the unexpected scheduling
between the used delayed mechanism (timer and workqueue).

The race can be demonstrated below:

Thread-1                           Thread-2
                                 | nci_dev_up()
                                 |   nci_open_device()
                                 |     __nci_request(nci_reset_req)
                                 |       nci_send_cmd
                                 |         queue_work(cmd_work)
nci_unregister_device()          |
  nci_close_device()             | ...
    del_timer_sync(cmd_timer)[1] |
...                              | Worker
nci_free_device()                | nci_cmd_work()
  kfree(ndev)[3]                 |   mod_timer(cmd_timer)[2]

In short, the cleanup routine thought that the cmd_timer has already
been detached by [1] but the mod_timer can re-attach the timer [2], even
it is already released [3], resulting in UAF.

This UAF is easy to trigger, crash trace by POC is like below

[   66.703713] ==================================================================
[   66.703974] BUG: KASAN: use-after-free in enqueue_timer+0x448/0x490
[   66.703974] Write of size 8 at addr ffff888009fb7058 by task kworker/u4:1/33
[   66.703974]
[   66.703974] CPU: 1 PID: 33 Comm: kworker/u4:1 Not tainted 5.18.0-rc2 ArrowOS-Devices#5
[   66.703974] Workqueue: nfc2_nci_cmd_wq nci_cmd_work
[   66.703974] Call Trace:
[   66.703974]  <TASK>
[   66.703974]  dump_stack_lvl+0x57/0x7d
[   66.703974]  print_report.cold+0x5e/0x5db
[   66.703974]  ? enqueue_timer+0x448/0x490
[   66.703974]  kasan_report+0xbe/0x1c0
[   66.703974]  ? enqueue_timer+0x448/0x490
[   66.703974]  enqueue_timer+0x448/0x490
[   66.703974]  __mod_timer+0x5e6/0xb80
[   66.703974]  ? mark_held_locks+0x9e/0xe0
[   66.703974]  ? try_to_del_timer_sync+0xf0/0xf0
[   66.703974]  ? lockdep_hardirqs_on_prepare+0x17b/0x410
[   66.703974]  ? queue_work_on+0x61/0x80
[   66.703974]  ? lockdep_hardirqs_on+0xbf/0x130
[   66.703974]  process_one_work+0x8bb/0x1510
[   66.703974]  ? lockdep_hardirqs_on_prepare+0x410/0x410
[   66.703974]  ? pwq_dec_nr_in_flight+0x230/0x230
[   66.703974]  ? rwlock_bug.part.0+0x90/0x90
[   66.703974]  ? _raw_spin_lock_irq+0x41/0x50
[   66.703974]  worker_thread+0x575/0x1190
[   66.703974]  ? process_one_work+0x1510/0x1510
[   66.703974]  kthread+0x2a0/0x340
[   66.703974]  ? kthread_complete_and_exit+0x20/0x20
[   66.703974]  ret_from_fork+0x22/0x30
[   66.703974]  </TASK>
[   66.703974]
[   66.703974] Allocated by task 267:
[   66.703974]  kasan_save_stack+0x1e/0x40
[   66.703974]  __kasan_kmalloc+0x81/0xa0
[   66.703974]  nci_allocate_device+0xd3/0x390
[   66.703974]  nfcmrvl_nci_register_dev+0x183/0x2c0
[   66.703974]  nfcmrvl_nci_uart_open+0xf2/0x1dd
[   66.703974]  nci_uart_tty_ioctl+0x2c3/0x4a0
[   66.703974]  tty_ioctl+0x764/0x1310
[   66.703974]  __x64_sys_ioctl+0x122/0x190
[   66.703974]  do_syscall_64+0x3b/0x90
[   66.703974]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[   66.703974]
[   66.703974] Freed by task 406:
[   66.703974]  kasan_save_stack+0x1e/0x40
[   66.703974]  kasan_set_track+0x21/0x30
[   66.703974]  kasan_set_free_info+0x20/0x30
[   66.703974]  __kasan_slab_free+0x108/0x170
[   66.703974]  kfree+0xb0/0x330
[   66.703974]  nfcmrvl_nci_unregister_dev+0x90/0xd0
[   66.703974]  nci_uart_tty_close+0xdf/0x180
[   66.703974]  tty_ldisc_kill+0x73/0x110
[   66.703974]  tty_ldisc_hangup+0x281/0x5b0
[   66.703974]  __tty_hangup.part.0+0x431/0x890
[   66.703974]  tty_release+0x3a8/0xc80
[   66.703974]  __fput+0x1f0/0x8c0
[   66.703974]  task_work_run+0xc9/0x170
[   66.703974]  exit_to_user_mode_prepare+0x194/0x1a0
[   66.703974]  syscall_exit_to_user_mode+0x19/0x50
[   66.703974]  do_syscall_64+0x48/0x90
[   66.703974]  entry_SYSCALL_64_after_hwframe+0x44/0xae

To fix the UAF, this patch adds flush_workqueue() to ensure the
nci_cmd_work is finished before the following del_timer_sync.
This combination will promise the timer is actually detached.

Fixes: 6a2968a ("NFC: basic NCI protocol implementation")
Signed-off-by: Lin Ma <[email protected]>
Reviewed-by: Krzysztof Kozlowski <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
Enprytna pushed a commit to Enprytna/quicksilver_kernel_xiaomi_ginkgo that referenced this issue Oct 25, 2023
[ Upstream commit ade32bd8a738d7497ffe9743c46728db26740f78 ]

unix_tot_inflight is changed under spin_lock(unix_gc_lock), but
unix_release_sock() reads it locklessly.

Let's use READ_ONCE() for unix_tot_inflight.

Note that the writer side was marked by commit 9d6d7f1cb67c ("af_unix:
annote lockless accesses to unix_tot_inflight & gc_in_progress")

BUG: KCSAN: data-race in unix_inflight / unix_release_sock

write (marked) to 0xffffffff871852b8 of 4 bytes by task 123 on cpu 1:
 unix_inflight+0x130/0x180 net/unix/scm.c:64
 unix_attach_fds+0x137/0x1b0 net/unix/scm.c:123
 unix_scm_to_skb net/unix/af_unix.c:1832 [inline]
 unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1955
 sock_sendmsg_nosec net/socket.c:724 [inline]
 sock_sendmsg+0x148/0x160 net/socket.c:747
 ____sys_sendmsg+0x4e4/0x610 net/socket.c:2493
 ___sys_sendmsg+0xc6/0x140 net/socket.c:2547
 __sys_sendmsg+0x94/0x140 net/socket.c:2576
 __do_sys_sendmsg net/socket.c:2585 [inline]
 __se_sys_sendmsg net/socket.c:2583 [inline]
 __x64_sys_sendmsg+0x45/0x50 net/socket.c:2583
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x72/0xdc

read to 0xffffffff871852b8 of 4 bytes by task 4891 on cpu 0:
 unix_release_sock+0x608/0x910 net/unix/af_unix.c:671
 unix_release+0x59/0x80 net/unix/af_unix.c:1058
 __sock_release+0x7d/0x170 net/socket.c:653
 sock_close+0x19/0x30 net/socket.c:1385
 __fput+0x179/0x5e0 fs/file_table.c:321
 ____fput+0x15/0x20 fs/file_table.c:349
 task_work_run+0x116/0x1a0 kernel/task_work.c:179
 resume_user_mode_work include/linux/resume_user_mode.h:49 [inline]
 exit_to_user_mode_loop kernel/entry/common.c:171 [inline]
 exit_to_user_mode_prepare+0x174/0x180 kernel/entry/common.c:204
 __syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline]
 syscall_exit_to_user_mode+0x1a/0x30 kernel/entry/common.c:297
 do_syscall_64+0x4b/0x90 arch/x86/entry/common.c:86
 entry_SYSCALL_64_after_hwframe+0x72/0xdc

value changed: 0x00000000 -> 0x00000001

Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 4891 Comm: systemd-coredum Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 ArrowOS-Devices#5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014

Fixes: 9305cfa ("[AF_UNIX]: Make unix_tot_inflight counter non-atomic")
Reported-by: syzkaller <[email protected]>
Signed-off-by: Kuniyuki Iwashima <[email protected]>
Reviewed-by: Eric Dumazet <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
Enprytna pushed a commit to Enprytna/quicksilver_kernel_xiaomi_ginkgo that referenced this issue Oct 25, 2023
[ Upstream commit a154f5f643c6ecddd44847217a7a3845b4350003 ]

The following call trace shows a deadlock issue due to recursive locking of
mutex "device_mutex". First lock acquire is in target_for_each_device() and
second in target_free_device().

 PID: 148266   TASK: ffff8be21ffb5d00  CPU: 10   COMMAND: "iscsi_ttx"
  #0 [ffffa2bfc9ec3b18] __schedule at ffffffffa8060e7f
  #1 [ffffa2bfc9ec3ba0] schedule at ffffffffa8061224
  #2 [ffffa2bfc9ec3bb8] schedule_preempt_disabled at ffffffffa80615ee
  #3 [ffffa2bfc9ec3bc8] __mutex_lock at ffffffffa8062fd7
  #4 [ffffa2bfc9ec3c40] __mutex_lock_slowpath at ffffffffa80631d3
  ArrowOS-Devices#5 [ffffa2bfc9ec3c50] mutex_lock at ffffffffa806320c
  ArrowOS-Devices#6 [ffffa2bfc9ec3c68] target_free_device at ffffffffc0935998 [target_core_mod]
  #7 [ffffa2bfc9ec3c90] target_core_dev_release at ffffffffc092f975 [target_core_mod]
  #8 [ffffa2bfc9ec3ca0] config_item_put at ffffffffa79d250f
  #9 [ffffa2bfc9ec3cd0] config_item_put at ffffffffa79d2583
 #10 [ffffa2bfc9ec3ce0] target_devices_idr_iter at ffffffffc0933f3a [target_core_mod]
 #11 [ffffa2bfc9ec3d00] idr_for_each at ffffffffa803f6fc
 #12 [ffffa2bfc9ec3d60] target_for_each_device at ffffffffc0935670 [target_core_mod]
 #13 [ffffa2bfc9ec3d98] transport_deregister_session at ffffffffc0946408 [target_core_mod]
 #14 [ffffa2bfc9ec3dc8] iscsit_close_session at ffffffffc09a44a6 [iscsi_target_mod]
 #15 [ffffa2bfc9ec3df0] iscsit_close_connection at ffffffffc09a4a88 [iscsi_target_mod]
 #16 [ffffa2bfc9ec3df8] finish_task_switch at ffffffffa76e5d07
 #17 [ffffa2bfc9ec3e78] iscsit_take_action_for_connection_exit at ffffffffc0991c23 [iscsi_target_mod]
 #18 [ffffa2bfc9ec3ea0] iscsi_target_tx_thread at ffffffffc09a403b [iscsi_target_mod]
 #19 [ffffa2bfc9ec3f08] kthread at ffffffffa76d8080
 #20 [ffffa2bfc9ec3f50] ret_from_fork at ffffffffa8200364

Fixes: 36d4cb460bcb ("scsi: target: Avoid that EXTENDED COPY commands trigger lock inversion")
Signed-off-by: Junxiao Bi <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Reviewed-by: Mike Christie <[email protected]>
Signed-off-by: Martin K. Petersen <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant