forked from bedssys/Bedssys
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_LSTM_old.py
413 lines (358 loc) · 16.8 KB
/
run_LSTM_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import os
import matplotlib
import matplotlib.pyplot as plt
import tensorflow as tf # Version 1.0.0 (some previous versions are used in past commits)
from sklearn import metrics
import random
from random import randint
import argparse
import logging
import time
import cv2
import numpy as np
from tf_pose.estimator import TfPoseEstimator
from tf_pose.networks import get_graph_path, model_wh
from itertools import chain, count
from sklearn.neighbors import NearestNeighbors
n_steps = 32
class openpose_human:
def __init__(self, camera=0,resize='0x0',resize_out_ratio=4.0,model='mobilenet_thin',show_process=False):
logger = logging.getLogger('TfPoseEstimator-WebCam')
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
logger.debug('initialization %s : %s' % (model, get_graph_path(model)))
w, h = model_wh(resize)
if w > 0 and h > 0:
e = TfPoseEstimator(get_graph_path(model), target_size=(w, h))
else:
e = TfPoseEstimator(get_graph_path(model), target_size=(432, 368))
logger.debug('cam read+')
cam = cv2.VideoCapture(camera)
ret_val, image = cam.read()
image_h, image_w = image.shape[:2]
# logger.info('cam image=%dx%d' % (image.shape[1], image.shape[0]))
fps_time = 0
videostep = 0
human_keypoint = []
while True:
ret_val, image = cam.read()
logger.debug('image process+')
humans = e.inference(image, resize_to_default=(w > 0 and h > 0), upsample_size=resize_out_ratio)
for human in humans:
human_keypoint.append(openpose_human.write_coco_json(human,image_w,image_h))
videostep += 1
if (videostep == 32):
videostep = 0
activity_human(human_keypoint)
human_keypoint = []
logger.debug('postprocess+')
image = TfPoseEstimator.draw_humans(image, humans, imgcopy=False)
logger.debug('show+')
cv2.putText(image,
"FPS: %f" % (1.0 / (time.time() - fps_time)),
(10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(0, 255, 0), 2)
cv2.imshow('tf-pose-estimation result', image)
fps_time = time.time()
tf.reset_default_graph() # Reset the graph
if cv2.waitKey(1) == 27:
break
logger.debug('finished+')
cv2.destroyAllWindows()
def write_coco_json(human, image_w, image_h):
keypoints = []
coco_ids = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
for coco_id in coco_ids:
if coco_id not in human.body_parts.keys():
keypoints.extend([0, 0])
continue
body_part = human.body_parts[coco_id]
keypoints.extend([round(body_part.x * image_w, 3), round(body_part.y * image_h, 3)])
return keypoints
class activity_human:
def __init__(self, human_keypoint):
# Useful Constants
# Output classes to learn how to classify
LABELS = [
"JUMPING",
"JUMPING_JACKS",
"BOXING",
"WAVING_2HANDS",
"WAVING_1HAND",
"CLAPPING_HANDS"
]
DATASET_PATH = "data/HAR_pose_activities/database/"
# X_train_path = DATASET_PATH + "X_train.txt"
# X_test_path = DATASET_PATH + "X_test.txt"
# X_test_path = "utilities/something/something.txt"
# y_train_path = DATASET_PATH + "Y_train.txt"
# y_test_path = DATASET_PATH + "Y_test.txt"
# n_steps = 32 # 32 timesteps per series
# n_steps = 1 # 32 timesteps per series
# X_train = load_X(X_train_path)
# X_test = activity_human.load_X(X_test_path)
# X_test = activity_human.load_XLive(human_keypoint)
#print X_test
# y_train = load_y(y_train_path)
# y_test = activity_human.load_y(y_test_path)
# proof that it actually works for the skeptical: replace labelled classes with random classes to train on
#for i in range(len(y_train)):
# y_train[i] = randint(0, 5)
# Input Data
X_test = activity_human.load_XLive(human_keypoint)
# n_input = len(X_train[0][0]) # num input parameters per timestep
# training_data_count = len(X_train) # 4519 training series (with 50% overlap between each serie)
# test_data_count = len(X_test) # 1197 test series
self.n_input = len(X_test[0][0])
self.n_hidden = 34 # Hidden layer num of features
n_classes = 6
n_steps = 32
#updated for learning-rate decay
# calculated as: decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
decaying_learning_rate = True
learning_rate = 0.0025 #used if decaying_learning_rate set to False
init_learning_rate = 0.005
decay_rate = 0.96 #the base of the exponential in the decay
decay_steps = 100000 #used in decay every 60000 steps with a base of 0.96
global_step = tf.Variable(0, trainable=False)
lambda_loss_amount = 0.0015
# training_iters = training_data_count *300 # Loop 300 times on the dataset, ie 300 epochs
# training_iters = training_data_count *60
# training_iters = training_data_count *120
# training_iters = training_data_count *1
batch_size = 512
display_iter = batch_size*8 # To show test set accuracy during training
# print("(X shape, y shape, every X's mean, every X's standard deviation)")
# print(X_train.shape, y_test.shape, np.mean(X_test), np.std(X_test))
# print("\nThe dataset has not been preprocessed, is not normalised etc")
# for _ in range(3):
# tf.reset_default_graph()
# var = tf.Variable(0)
# with tf.Session() as session:
# session.run(tf.global_variables_initializer())
# print(len(session.graph._nodes_by_name.keys()))
#### Build the network
# Graph input/output
x = tf.placeholder(tf.float32, [None, n_steps, self.n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
# Graph weights
weights = {
'hidden': tf.Variable(tf.random_normal([self.n_input, self.n_hidden])), # Hidden layer weights
'out': tf.Variable(tf.random_normal([self.n_hidden, n_classes], mean=1.0))
}
biases = {
'hidden': tf.Variable(tf.random_normal([self.n_hidden])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
pred = activity_human.LSTM_RNN(self, x, weights, biases)
# Loss, optimizer and evaluation
l2 = lambda_loss_amount * sum(
tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables()
) # L2 loss prevents this overkill neural network to overfit the data
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=pred)) + l2 # Softmax loss
if decaying_learning_rate:
learning_rate = tf.train.exponential_decay(init_learning_rate, global_step*batch_size, decay_steps, decay_rate, staircase=True)
#decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) #exponentially decayed learning rate
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost,global_step=global_step) # Adam Optimizer
# correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
# accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# if decaying_learning_rate:
# learning_rate = tf.train.exponential_decay(init_learning_rate, global_step*batch_size, decay_steps, decay_rate, staircase=True)
test_losses = []
test_accuracies = []
train_losses = []
train_accuracies = []
sess = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=True))
# sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
init = tf.global_variables_initializer()
sess.run(init)
# training_iters = training_data_count *30
#create saver before training
saver = tf.train.Saver(var_list={'wh':weights['hidden'], 'wo':weights['out'], 'bh':biases['hidden'], 'bo':biases['out']})
load = True
train = False
update = False
#check if you want to retrain or import a saved model
print("aaa")
if load:
saver.restore(sess, DATASET_PATH + "model.ckpt")
print("Model restored.")
print("bbb")
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Perform Training steps with "batch_size" amount of data at each loop.
# Elements of each batch are chosen randomly, without replacement, from X_train,
# restarting when remaining datapoints < batch_size
step = 1
# unsampled_indices = range(0,len(X_train))
##### Check if you want to save your current model
# if update:
# save_path = saver.save(sess, DATASET_PATH + "model.ckpt")
# print("Model saved in file: %s" % save_path)
time_start = time.time()
##### Inferencing
# X_infer_path = "utilities/something/something.txt"
# X_infer_path = DATASET_PATH + "X_test.txt"
# X_val = load_X(X_infer_path)
X_test = activity_human.load_XLive(human_keypoint)
preds = sess.run(
[pred],
feed_dict={
x: X_test
}
)
print(preds)
time_stop = time.time()
print("TOTAL TIME: {}".format(time_stop - time_start))
# (Inline plots: )
# %matplotlib inline
# font = {
# 'family' : 'Bitstream Vera Sans',
# 'weight' : 'bold',
# 'size' : 18
# }
# matplotlib.rc('font', **font)
# width = 12
# height = 12
# plt.figure(figsize=(width, height))
# indep_train_axis = np.array(range(batch_size, (len(train_losses)+1)*batch_size, batch_size))
#plt.plot(indep_train_axis, np.array(train_losses), "b--", label="Train losses")
# plt.plot(indep_train_axis, np.array(train_accuracies), "g--", label="Train accuracies")
# indep_test_axis = np.append(
# np.array(range(batch_size, len(test_losses)*display_iter, display_iter)[:-1]),
# [training_iters]
# )
# plt.plot(indep_test_axis, np.array(test_losses), "b-", linewidth=2.0, label="Test losses")
# plt.plot(indep_test_axis, np.array(test_accuracies), "b-", linewidth=2.0, label="Test accuracies")
# print(len(test_accuracies))
# print(len(train_accuracies))
# plt.title("Training session's Accuracy over Iterations")
# plt.legend(loc='lower right', shadow=True)
# plt.ylabel('Training Accuracy')
# plt.xlabel('Training Iteration')
# plt.show()
# Results
# predictions = one_hot_predictions.argmax(1)
# print("Testing Accuracy: {}%".format(100*accuracy_fin))
# print("")
# print("Precision: {}%".format(100*metrics.precision_score(y_test, predictions, average="weighted")))
# print("Recall: {}%".format(100*metrics.recall_score(y_test, predictions, average="weighted")))
# print("f1_score: {}%".format(100*metrics.f1_score(y_test, predictions, average="weighted")))
# print("")
# print("Confusion Matrix:")
# print("Created using test set of {} datapoints, normalised to % of each class in the test dataset".format(len(y_test)))
# confusion_matrix = metrics.confusion_matrix(y_test, predictions)
#print(confusion_matrix)
# normalised_confusion_matrix = np.array(confusion_matrix, dtype=np.float32)/np.sum(confusion_matrix)*100
# Plot Results:
# width = 12
# height = 12
# plt.figure(figsize=(width, height))
# plt.imshow(
# normalised_confusion_matrix,
# interpolation='nearest',
# cmap=plt.cm.Blues
# )
# plt.title("Confusion matrix \n(normalised to % of total test data)")
# plt.colorbar()
# tick_marks = np.arange(n_classes)
# plt.xticks(tick_marks, LABELS, rotation=90)
# plt.yticks(tick_marks, LABELS)
# plt.tight_layout()
# plt.ylabel('True label')
# plt.xlabel('Predicted label')
# plt.show()
#
#X_val_path = DATASET_PATH + "X_val.txt"
#X_val = load_X(X_val_path)
#print X_val
#
#preds = sess.run(
# [pred],
# feed_dict={
# x: X_val
# }
#)
#
#print preds
#sess.close()
# print(test_accuracies)
# Load the networks inputs
def load_X(X_path):
file = open(X_path, 'r')
X_ = np.array(
[elem for elem in [
row.split(',') for row in file
]],
dtype=np.float32
)
file.close()
blocks = int(len(X_) / n_steps)
X_ = np.array(np.split(X_,blocks))
return X_
# Load the networks outputs
def load_XLive(keypoints):
# print(keypoints)
for row in keypoints:
print(len(row))
X_ = np.array(keypoints,dtype=np.float32)
blocks = int(len(X_) / n_steps)
X_ = np.array(np.split(X_,blocks))
return X_
def load_y(y_path):
file = open(y_path, 'r')
y_ = np.array(
[elem for elem in [
row.replace(' ', ' ').strip().split(' ') for row in file
]],
dtype=np.int32
)
file.close()
# for 0-based indexing
return y_ - 1
def LSTM_RNN(self, _X, _weights, _biases):
# model architecture based on "guillaume-chevalier" and "aymericdamien" under the MIT license.
_X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
_X = tf.reshape(_X, [-1, self.n_input])
# Rectifies Linear Unit activation function used
_X = tf.nn.relu(tf.matmul(_X, _weights['hidden']) + _biases['hidden'])
# Split data because rnn cell needs a list of inputs for the RNN inner loop
_X = tf.split(_X, n_steps, 0)
# Define two stacked LSTM cells (two recurrent layers deep) with tensorflow
lstm_cell_1 = tf.contrib.rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cell_2 = tf.contrib.rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cells = tf.contrib.rnn.MultiRNNCell([lstm_cell_1, lstm_cell_2], state_is_tuple=True)
outputs, states = tf.contrib.rnn.static_rnn(lstm_cells, _X, dtype=tf.float32)
# A single output is produced, in style of "many to one" classifier, refer to http://karpathy.github.io/2015/05/21/rnn-effectiveness/ for details
lstm_last_output = outputs[-1]
# Linear activation
return tf.matmul(lstm_last_output, _weights['out']) + _biases['out']
def extract_batch_size(_train, _labels, _unsampled, batch_size):
# Fetch a "batch_size" amount of data and labels from "(X|y)_train" data.
# Elements of each batch are chosen randomly, without replacement, from X_train with corresponding label from Y_train
# unsampled_indices keeps track of sampled data ensuring non-replacement. Resets when remaining datapoints < batch_size
shape = list(_train.shape)
shape[0] = batch_size
batch_s = np.empty(shape)
batch_labels = np.empty((batch_size,1))
for i in range(batch_size):
# Loop index
# index = random sample from _unsampled (indices)
index = random.choice(_unsampled)
batch_s[i] = _train[index]
batch_labels[i] = _labels[index]
_unsampled = list(_unsampled)
_unsampled.remove(index)
return batch_s, batch_labels, _unsampled
def one_hot(y_):
# One hot encoding of the network outputs
# e.g.: [[5], [0], [3]] --> [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]
y_ = y_.reshape(len(y_))
n_values = int(np.max(y_)) + 1
return np.eye(n_values)[np.array(y_, dtype=np.int32)] # Returns FLOATS
if __name__ == '__main__':
openpose_human()