-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsrya.py
40 lines (31 loc) · 1.52 KB
/
srya.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# KEYWORD EXTRACTION
from keybert import KeyBERT
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import CountVectorizer
import numpy as np
def extract_keywords_with_keybert(article_text, top_n=10, diversity=0.5):
model = KeyBERT(model="distilbert-base-nli-mean-tokens")
keywords_with_scores = model.extract_keywords(
article_text,
top_n=top_n,
keyphrase_ngram_range=(1, 2),
stop_words="english",
diversity=diversity
)
# Filter out similar keywords
filtered_keywords = []
vectorizer = CountVectorizer().fit([k[0] for k in keywords_with_scores])
keyword_vectors = vectorizer.transform([k[0] for k in keywords_with_scores])
for i, keyword in enumerate(keywords_with_scores):
if i == 0:
filtered_keywords.append(keyword)
continue
sim_scores = cosine_similarity(keyword_vectors[i], keyword_vectors[:i])
if np.max(sim_scores) < 0.8: # Threshold for similarity
filtered_keywords.append(keyword)
return filtered_keywords
data = [('greatest batsmen', 0.6964), ('icc champions', 0.546), ('scoring centuries', 0.4551), ('odi batsmen', 0.4279), ('cricketer decade', 0.4275), ('indian cricketer', 0.4174), ('international cricketer', 0.4038), ('male cricketer', 0.4019), ('batsmen history', 0.3895), ('international cricket', 0.3802)]
# Extract only the texts from the tuples
texts_only = [item[0] for item in data]
# Print the result
print(texts_only)