To install Articulus RAG i.e., a private repo, we can use the Access Token of GitHub.
git clone https://<UPDATE-WITH-YOUR-TOKEN>@https://github.com/AryaChakraborty/articulus_rag
Create virtual environment
python3 -m venv env
source env/bin/activate
or
virtualenv env
source env/bin/activate
Install all the packages within the virtual environment.
pip install -r requirements.txt
Install the beyondllm framework.
pip install -e .
- Method: GET
- Description: Retrieves ranked documents from the MongoDB collection.
- Parameters: None
- Response:
- Success: Returns a JSON object containing the ranked documents.
- Error: Returns a JSON object with an error message.
- Method: POST
- Description: Retrieves ranked documents based on search keywords.
- Parameters:
- search_keywords: List of search keywords.
- Request Body Example:
{ "search_keywords": ["keyword1", "keyword2", "keyword3"] }
- Response:
- Success: Returns a JSON object containing the ranked documents.
- Error: Returns a JSON object with an error message.
- Method: POST
- Description: Extracts top 10 keywords from the given text.
- Parameters:
- text: Input text from which keywords need to be extracted.
- Request Body Example:
{ "body": "Input text for keyword extraction." }
- Response:
- Success: Returns a JSON object containing the extracted keywords.
- Error: Returns a JSON object with an error message.
- Method: POST
- Description: Uses the enterprise RAG model to provide a response to the given question.
- Parameters:
- path: URL path or source of the content.
- type: Type of content (e.g., "url", "youtube", etc.).
- question: Question to be answered.
- Request Body Example:
{ "path": "https://highonbugs.sbk2k1.in/sows", "type": "url", "question": "What is the blog about?" }
- Response:
- Success: Returns a JSON object containing the response from the enterprise RAG model.
- Error: Returns a JSON object with an error message.