You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The legacy version of torchtext is no longer supported. I had to install an old one.
When trying to run this cell :
model = TransformerClassifier(num_layers=1, d_model=32, num_heads=2,
conv_hidden_dim=128, input_vocab_size=50002, num_answers=2)
model.to(device)
The last error can be solved easily by adding detach() :
E[:, 0::2] = torch.FloatTensor(np.sin(theta[:, 0::2])).detach()
E[:, 1::2] = torch.FloatTensor(np.cos(theta[:, 1::2])).detach()
The legacy version of torchtext is no longer supported. I had to install an old one.
When trying to run this cell :
model = TransformerClassifier(num_layers=1, d_model=32, num_heads=2,
conv_hidden_dim=128, input_vocab_size=50002, num_answers=2)
model.to(device)
I'm getting this error :
RuntimeError Traceback (most recent call last)
Cell In[18], line 1
----> 1 model = TransformerClassifier(num_layers=1, d_model=32, num_heads=2,
2 conv_hidden_dim=128, input_vocab_size=50002, num_answers=2)
3 model.to(device)
Cell In[17], line 5, in TransformerClassifier.init(self, num_layers, d_model, num_heads, conv_hidden_dim, input_vocab_size, num_answers)
2 def init(self, num_layers, d_model, num_heads, conv_hidden_dim, input_vocab_size, num_answers):
3 super().init()
----> 5 self.encoder = Encoder(num_layers, d_model, num_heads, conv_hidden_dim, input_vocab_size,
6 maximum_position_encoding=10000)
7 self.dense = nn.Linear(d_model, num_answers)
Cell In[11], line 9, in Encoder.init(self, num_layers, d_model, num_heads, ff_hidden_dim, input_vocab_size, maximum_position_encoding, p)
6 self.d_model = d_model
7 self.num_layers = num_layers
----> 9 self.embedding = Embeddings(d_model, input_vocab_size,maximum_position_encoding, p)
11 self.enc_layers = nn.ModuleList()
12 for _ in range(num_layers):
Cell In[10], line 17, in Embeddings.init(self, d_model, vocab_size, max_position_embeddings, p)
15 self.word_embeddings = nn.Embedding(vocab_size, d_model, padding_idx=1)
16 self.position_embeddings = nn.Embedding(max_position_embeddings, d_model)
---> 17 create_sinusoidal_embeddings(
18 nb_p=max_position_embeddings,
19 dim=d_model,
20 E=self.position_embeddings.weight
21 )
23 self.LayerNorm = nn.LayerNorm(d_model, eps=1e-12)
Cell In[10], line 6, in create_sinusoidal_embeddings(nb_p, dim, E)
1 def create_sinusoidal_embeddings(nb_p, dim, E):
2 theta = np.array([
3 [p / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
4 for p in range(nb_p)
5 ])
----> 6 E[:, 0::2] = torch.FloatTensor(np.sin(theta[:, 0::2]))
7 E[:, 1::2] = torch.FloatTensor(np.cos(theta[:, 1::2]))
8 E.requires_grad = False
RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.
Anyway, thank you for this great course. I'm really enjoying learning about deep learning :)
The text was updated successfully, but these errors were encountered: