-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathigo-test.py
216 lines (176 loc) · 6.9 KB
/
igo-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# %%
import xml.etree.ElementTree as ET
from html.entities import name2codepoint
from html.parser import HTMLParser
from urllib import request
from time import sleep
from igo import *
PLACE = 'Barcelona, Catalonia'
GRAPH_FILENAME = 'barcelona.graph'
SIZE = 800
HIGHWAYS_URL = 'https://opendata-ajuntament.barcelona.cat/data/dataset/1090983a-1c40-4609-8620-14ad49aae3ab/resource/1d6c814c-70ef-4147-aa16-a49ddb952f72/download/transit_relacio_trams.csv'
CONGESTIONS_URL = 'https://opendata-ajuntament.barcelona.cat/data/dataset/8319c2b1-4c21-4962-9acd-6db4c5ff1148/resource/2d456eb5-4ea6-4f68-9794-2f3f1a58a933/download'
# %%
graph = load_graph(GRAPH_FILENAME)
highways = download_highways(HIGHWAYS_URL)
congestions = download_congestions(CONGESTIONS_URL)
complete_data = build_complete_traffic_data(highways, congestions)
plot_graph(graph)
plot_highways(highways)
plot_congestions(complete_data)
build_igraph(graph, complete_data)
path = build_ipath(graph, 'Zona Franca', 'Hospital de Sant Pau')
plot_path(graph, path)
# %%
path2 = build_ipath(graph, 'FME', 'Vallvidrera')
plot_path(graph, path2)
# %%
def _set_congestion(tdata: Traffic_data, graph):
coord = tdata.coordinates
l = len(coord)
edge_nodes_lat = list()
edge_nodes_lng = list()
stupid_nodes = list()
for i in range(0, l, 2):
edge_nodes_lat.append(coord[i])
edge_nodes_lng.append(coord[i+1])
nn = ox.nearest_nodes(graph, edge_nodes_lat, edge_nodes_lng)
for i in range(1, len(nn)):
orig = nn[i-1]
dest = nn[i]
try:
path = ox.shortest_path(graph, orig, dest, weight='length')
except:
try:
path = ox.shortest_path(graph, dest, orig, weight='length')
except:
print(
'no he trobat cap camí entre {a} i {b} :('.format(a=orig, b=dest))
stupid_nodes.append(orig)
stupid_nodes.append(dest)
for i in range(1, len(path)):
a = path[i-1]
b = path[i]
graph.adj[a][b][0]['congestion'] = tdata.state
return stupid_nodes
pond = {0: 1.75, 1: 1, 2: 1.25, 3: 1.5, 4: 2, 5: 3, 6: float('inf'), None: 1}
def build_igraph(graph, traffic_data):
nx.set_edge_attributes(graph, name='congestion', values=None)
nx.set_edge_attributes(graph, name='itime', values=None)
# ox.add_edge_bearings(graph)
stupid_nodes_2 = list()
for data in traffic_data:
test = _set_congestion(data, graph)
stupid_nodes_2.append(test)
for _, info in graph.edges.items():
try:
speed = float(info['maxspeed'])/3.6
except KeyError:
speed = 30
except TypeError:
speed = sum(list(map(int, info['maxspeed'])))/len(info['maxspeed'])
# base_itime =
info['itime'] = (info['length']/speed)*pond[info['congestion']]
return stupid_nodes_2
# %%
def build_ipath(igraph, origin, destiny):
origin = origin + ', Barcelona'
destiny = destiny + ', Barcelona'
nn_origin = ox.nearest_nodes(
igraph, ox.geocode(origin)[1], ox.geocode(origin)[0])
nn_destiny = ox.nearest_nodes(
igraph, ox.geocode(destiny)[1], ox.geocode(destiny)[0])
return ox.shortest_path(igraph, nn_origin, nn_destiny, weight="itime")
def plot_path(igraph, ipath, img_filename, size):
m_bcn = StaticMap(size, size)
try:
origin_marker = CircleMarker((
igraph.nodes[ipath[0]]['x'], igraph.nodes[ipath[0]]['y']), 'green', 9)
destiny_marker = CircleMarker((
igraph.nodes[ipath[-1]]['x'], igraph.nodes[ipath[-1]]['y']), 'green', 9)
m_bcn.add_marker(origin_marker)
m_bcn.add_marker(destiny_marker)
except:
print('There is no path')
for i in range(0, len(ipath)):
if (i + 1 < len(ipath)):
line = Line(((igraph.nodes[ipath[i]]['x'], igraph.nodes[ipath[i]]['y']), (
igraph.nodes[ipath[i+1]]['x'], igraph.nodes[ipath[i+1]]['y'])), '#0884ff', 3)
m_bcn.add_line(line)
image = m_bcn.render()
image.save(img_filename)
# %%
non_nodes = build_igraph(graph, complete_data, _debug_nodes=True)
node_colors = list()
for node in graph.nodes:
if node in non_nodes:
node_colors.append('purple')
else:
node_colors.append('white')
edge_colors = list()
for edge, info in graph.edges.items():
if info['congestion'] is not None:
edge_colors.append(color_decide(info['congestion']))
else:
edge_colors.append('white')
ox.plot_graph(graph, figsize=(20, 20), node_size=3, node_color=node_colors,
edge_color=edge_colors, save=True, filepath='tmp_tmp_tmp.png')
# %%
def test():
# load/download graph (using cache) and plot it on the screen
if not exists_graph(GRAPH_FILENAME):
print('File does not exist, downloading.')
graph = download_graph(PLACE)
save_graph(graph, GRAPH_FILENAME)
else:
print('File exists!')
graph = load_graph(GRAPH_FILENAME)
plot_graph(graph)
# download highways and plot them into a PNG image
highways = download_highways(HIGHWAYS_URL)
plot_highways(highways, 'highways.png', SIZE)
# download congestions and plot them into a PNG image
congestions = download_congestions(CONGESTIONS_URL)
complete_data = build_complete_traffic_data(highways, congestions)
plot_congestions(complete_data, 'congestions.png', SIZE)
# get the 'intelligent graph' version of a graph taking into account the congestions of the highways
igraph = build_igraph(graph, complete_data)
# get 'intelligent path' between two addresses and plot it into a PNG image
ipath = build_ipath(
igraph, "Campus Nord", "Sagrada Família")
plot_path(igraph, ipath, 'ipath.png', SIZE)
test()
# # for each node and its information...
# for node1, info1 in graph.nodes.items():
# print(node1, info1)
# # for each adjacent node and its information...
# for node2, edge in graph.adj[node1].items():
# print(' ', node2)
# print(' ', edge)
'''
for node, info in graph.nodes.items():
print('cruilla a:', node, sep=' ')
print('te info:', info, sep=' ')
for neighbour, info2 in graph.adj[node].items():
print('te vei:', node, sep=' ')
print('els connecta el carrer:',info2,sep=' ')
sleep(10)
print(10*'-')
'''
# %%
def get_location_name(lat, lon):
request_url = 'https://nominatim.openstreetmap.org/reverse?lat={lat}&lon={lon}'.format(
lat=lat, lon=lon)
response = request.urlopen(request_url)
# print('response is:', response, sep=' ')
lines = [l.decode('utf-8') for l in response.readlines()]
result = ''.join(lines)
root = ET.fromstring(result)
return root[0].text
# https://nominatim.openstreetmap.org/reverse?lat=<value>&lon=<value>&<params>
res = get_location_name(41.607083814675924, 2.5447618961334233)
# %%
# tree = ET.fromstring(res)
# root = tree.getroot()
root = ET.fromstring(res)
# %%