forked from EddyRivasLab/easel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathesl_gev.c
968 lines (847 loc) · 29.4 KB
/
esl_gev.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
/* Statistical routines for generalized extreme value (GEV) distributions.
*
* Contents:
* 1. Evaluating densities and distributions
* 2. Generic API routines: for general interface w/ histogram module
* 3. Dumping plots to files
* 4. Sampling
* 5. ML fitting to complete or censored data
* 6. Stats driver
* 7. Example
*
* Xref:
* STL9/118, 2005/0712-easel-gev-impl. Verified against evd package in R.
*
* To-do:
* - Fit*() functions should return eslEINVAL on n=0, eslENORESULT
* on failure due to small n. Compare esl_gumbel. xref J12/93.
* SRE, Wed Nov 27 11:18:07 2013
*
*****************************************************************
* GEV distribution
* G(x) = exp{ -[1 + \alpha \lambda(x - \mu)]^{-1/\alpha} }
* where:
* \mu = location parameter
* \lambda = scale parameter (\lambda = 1/\sigma, in [Coles01] notation)
* \alpha = shape parameter (\alpha = \xi, in [Coles01] notation)
*
* lim_{\alpha -> 0} is a type I EVD (Gumbel)
* \alpha > 0 is a Type II EVD (Frechet)
* \alpha < 0 is a Type III EVD (Weibull)
*
* Reference:
* [Coles01]
* S. Coles, An Introduction to Statistical Modeling of Extreme Values,
* Springer, 2001.
*/
#include <esl_config.h>
#include <stdio.h>
#include <math.h>
#include <float.h>
#include "easel.h"
#include "esl_minimizer.h"
#include "esl_random.h"
#include "esl_stats.h"
#include "esl_gev.h"
/****************************************************************************
* 1. Evaluating densities and distributions
****************************************************************************/
/* Function: esl_gev_pdf()
*
* Purpose: Calculates the probability density function for the
* generalized extreme value distribution, $P(X=x)$, given
* quantile <x> and GEV location, scale, shape parameters
* <mu>, <lambda>, <alpha>.
*/
double
esl_gev_pdf(double x, double mu, double lambda, double alpha)
{
double y = lambda * (x-mu);
double ya1 = 1. + alpha * y;
double lya1;
/* Special case: if alpha is tiny, approximate by a Gumbel */
if (fabs(y*alpha) < 1e-12) return (lambda * exp(-y - exp(-y)));
/* Else, use GEV; but use log/exp to avoid a pow() call,
* as that's almost 2x faster (on my machine anyway).
*/
if (ya1 <= 0) return 0.;
lya1 = log(ya1);
return (lambda * exp(-(1.+ 1./alpha)*lya1 - exp(-lya1/alpha)));
}
/* Function: esl_gev_logpdf()
*
* Purpose: Calculates the log probability density function for the
* generalized extreme value distribution, $\log P(X=x)$,
* given quantile <x> and GEV location, scale, shape
* parameters <mu>, <lambda>, <alpha>.
*/
double
esl_gev_logpdf(double x, double mu, double lambda, double alpha)
{
double y = lambda *(x-mu);
double ya1 = 1. + alpha*y;
double lya1;
/* Special case: if alpha is tiny, approx by a Gumbel */
if (fabs(y*alpha) < 1e-12) return ((log(lambda) - y) - exp(-y));
/* It's important not to return NaN for this domain error;
* minimizer relies on being able to compare logL's for any parameter,
* and you can't compare NaN to anything.
*/
if (ya1 <= 0) return -eslINFINITY;
lya1 = log(ya1);
return ( (log(lambda) - (1.+1./alpha)*lya1) - exp(-lya1/alpha));
}
/* Function: esl_gev_cdf()
*
* Purpose: Calculates the cumulative distribution function for the
* generalized extreme value distribution, $P(X \leq x)$,
* given quantile <x> and GEV location, scale, shape
* parameters <mu>, <lambda>, <alpha>.
*/
double
esl_gev_cdf(double x, double mu, double lambda, double alpha)
{
double y = lambda *(x-mu);
double ya1 = 1. + alpha*y;
double lya1;
/* Special case: if alpha is tiny, approx by a Gumbel */
if (fabs(y*alpha) < 1e-12) return (exp(-exp(-y)));
if (ya1 <= 0) {
if (x < mu) return 0.0; /* the frechet case */
else return 1.0; /* the weibull case */
}
lya1 = log(ya1);
return (exp(-exp(-lya1/alpha)));
}
/* Function: esl_gev_logcdf()
*
* Purpose: Calculates the log of the cumulative distribution function for a
* generalized extreme value distribution, $\log P(X \leq x)$,
* given quantile <x> and GEV location, scale, shape
* parameters <mu>, <lambda>, <alpha>.
*/
double
esl_gev_logcdf(double x, double mu, double lambda, double alpha)
{
double y = lambda *(x-mu);
double ya1 = 1. + alpha*y;
double lya1;
/* Special case: if alpha is tiny, approx by a Gumbel */
if (fabs(y*alpha) < 1e-12) return (-exp(-y));
if (ya1 <= 0) {
if (x < mu) return -eslINFINITY; /* Frechet */
else return 0.0; /* Weibull */
}
lya1 = log(ya1);
return (-exp(-lya1/alpha));
}
/* Function: esl_gev_surv()
*
* Purpose: Calculates the survivor function, $P(X>x)$ (that is, 1-cdf),
* the right tail's probability mass, given quantile <x> and
* GEV location, scale, shape parameters <mu>, <lambda>, <alpha>.
*/
double
esl_gev_surv(double x, double mu, double lambda, double alpha)
{
double y = lambda *(x-mu);
double ya1 = 1. + alpha*y;
double lya1;
/* Special case: for tiny alpha, use Gumbel (xref esl_gumbel.c) */
if (fabs(y*alpha) < 1e-12)
return ((y > -0.5*log(DBL_EPSILON)) ? exp(-y) : (1 - exp(-exp(-y))));
if (ya1 <= 0) {
if (x < mu) return 1.0; /* the frechet case */
else return 0.0; /* the weibull case */
}
lya1 = log(ya1)/alpha;
return ((lya1 > -0.5*log(DBL_EPSILON)) ? exp(-lya1) : (1 - exp(-exp(-lya1))));
}
/* Function: esl_gev_logsurv()
*
* Purpose: Calculates the log survivor function $\log P(X>x)$ for a
* generalized extreme value distribution (that is,
* $\log (1 - \mbox{cdf})$, the log of the right tail's probability
* mass), given quantile <x> and GEV location, scale, shape
* parameters <mu>, <lambda>, <alpha>.
*/
double
esl_gev_logsurv(double x, double mu, double lambda, double alpha)
{
double y = lambda *(x-mu);
double ya1 = 1. + alpha*y;
double lya1;
/* Special case: for tiny alpha, use Gumbel (xref esl_gumbel.c) */
if (fabs(y*alpha) < 1e-12)
{
if (y > -0.5 * log(DBL_EPSILON)) return (-y);
else if (y < -2.9) return (-exp(-exp(-y)));
else return (log(1-exp(-exp(-y))));
}
/* See esl_gumbel.c for analysis of the crossovers in
* the three cases (small, large, and ok lya1)
*/
if (ya1 <= 0) {
if (x < mu) return 1.0; /* Frechet case */
else return -eslINFINITY; /* Weibull case */
}
lya1 = log(ya1)/alpha;
if (lya1 > -0.5 * log(DBL_EPSILON)) return (-lya1);
else if (lya1 < -2.9) return (-exp(-exp(-lya1)));
else return (log(1-exp(-exp(-lya1))));
}
/* Function: esl_gev_invcdf()
*
* Purpose: Calculates the inverse CDF of the GEV: given a probability
* <p> ($0 < p < 1$), returns the quantile <x> which would
* give <p> as its CDF, for a generalized extreme value
* distribution with parameters <mu>, <lambda>, and <alpha>.
*/
double
esl_gev_invcdf(double p, double mu, double lambda, double alpha)
{
/* failover to Gumbel sample, for tiny alpha */
if (fabs(alpha) < 1e-12) return (mu - log(-1. * log(p)) / lambda);
return mu + (exp(-alpha*log(-log(p))) - 1.) / (alpha * lambda) ;
}
/*-------------------- end densities & distributions ------------------------*/
/*****************************************************************
* 2. Generic API routines: for general interface w/ histogram module
*****************************************************************/
/* Function: esl_gev_generic_pdf()
*
* Purpose: Generic-API version of PDF.
*/
double
esl_gev_generic_pdf(double x, void *params)
{
double *p = (double *) params;
return esl_gev_pdf(x, p[0], p[1], p[2]);
}
/* Function: esl_gev_generic_cdf()
*
* Purpose: Generic-API version of CDF.
*/
double
esl_gev_generic_cdf(double x, void *params)
{
double *p = (double *) params;
return esl_gev_cdf(x, p[0], p[1], p[2]);
}
/* Function: esl_gev_generic_surv()
*
* Purpose: Generic-API version of survival function.
*/
double
esl_gev_generic_surv(double x, void *params)
{
double *p = (double *) params;
return esl_gev_surv(x, p[0], p[1], p[2]);
}
/* Function: esl_gev_generic_invcdf()
*
* Purpose: Generic-API version of inverse CDF.
*/
double
esl_gev_generic_invcdf(double p, void *params)
{
double *v = (double *) params;
return esl_gev_invcdf(p, v[0], v[1], v[2]);
}
/*------------------------- end of generic API --------------------------*/
/****************************************************************************
* 3. Dumping plots to files
****************************************************************************/
/* Function: esl_gev_Plot()
*
* Purpose: Plot some GEV function <func> (for instance,
* <esl_gev_pdf()>) for parameters <mu> and <lambda>, for
* a range of quantiles x from <xmin> to <xmax> in steps of <xstep>;
* output to an open stream <fp> in xmgrace XY input format.
*
* Returns: <eslOK> on success.
*
* Throws: <eslEWRITE> on any system write error, such as filled disk.
*/
int
esl_gev_Plot(FILE *fp, double mu, double lambda, double alpha,
double (*func)(double x, double mu, double lambda, double alpha),
double xmin, double xmax, double xstep)
{
double x;
for (x = xmin; x <= xmax; x += xstep)
if (fprintf(fp, "%f\t%g\n", x, (*func)(x, mu, lambda, alpha)) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "gev plot write failed");
if (fprintf(fp, "&\n") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "gev plot write failed");
return eslOK;
}
/*-------------------- end plot dumping routines ---------------------------*/
/****************************************************************************
* 4. Sampling
****************************************************************************/
/* Function: esl_gev_Sample()
*
* Purpose: Sample a GEV-distributed random variate,
* by the transformation method.
*/
double
esl_gev_Sample(ESL_RANDOMNESS *r, double mu, double lambda, double alpha)
{
double p;
p = esl_rnd_UniformPositive(r);
return esl_gev_invcdf(p, mu, lambda, alpha);
}
/*--------------------------- end sampling ---------------------------------*/
/****************************************************************************
* 5. ML fitting to complete or censored data
****************************************************************************/
/* Easel's conjugate gradient descent code allows a single void ptr to
* point to any necessary fixed data, so we put everything into one
* structure:
*/
struct gev_data {
double *x; /* data: n observed samples */
int n; /* number of observed samples */
int is_censored; /* TRUE if a censored, not complete dataset */
double phi; /* censoring/truncation threshold: obs x_i > phi */
int z; /* # of censored samples */
};
/* gev_func():
* Returns the neg log likelihood of a complete or censored GEV data sample;
* in the API of the conjugate gradient descent optimizer in esl_minimizer.
*/
static double
gev_func(double *p, int nparam, void *dptr)
{
double mu, w, lambda, alpha;
struct gev_data *data;
double logL;
int i;
/* Unpack what the optimizer gave us.
*/
mu = p[0];
w = p[1]; /* w is a c.o.v. to allow unconstrained opt of lambda>0 */
lambda = exp(w);
alpha = p[2];
data = (struct gev_data *) dptr;
logL = 0.;
for (i = 0; i < data->n; i++)
logL += esl_gev_logpdf(data->x[i], mu, lambda, alpha);
if (data->is_censored)
logL += data->z * esl_gev_logcdf(data->phi, mu, lambda, alpha);
return -logL; /* goal: minimize NLL */
}
/* gev_gradient()
* Computes the gradient of the negative log likelihood of a complete
* or censored GEV sample; in the API of the CG optimizer.
*/
static void
gev_gradient(double *p, int nparam, void *dptr, double *dp)
{
double mu, w, lambda, alpha;
struct gev_data *data;
double *x;
int i;
double dmu, dw, dalpha;
double y, ay, ay1, lay1;
/* Unpack what the optimizer gave us */
mu = p[0];
w = p[1]; /* w is a c.o.v. to allow unconstrained opt of lambda>0 */
lambda = exp(w);
alpha = p[2];
data = (struct gev_data *) dptr;
x = data->x;
dmu = 0.;
dw = data->n; /* d/dw, term1 */
dalpha = 0.;
for (i = 0; i < data->n; i++)
{
y = lambda * (x[i]-mu);
ay = alpha*y;
ay1 = 1+ay; /* 1+ay=1, for ay < DBL_EPSILON */
lay1 = log(ay1);
/* d/dmu, term1. (will become 1, for small alpha.) */
dmu += (alpha+1) / ay1;
/* d/dmu, term2. For tiny ay, use log(1+x) ~ x to simplify. */
if (fabs(ay) < 1e-12) dmu -= exp(-y);
else dmu -= exp(-(1+1/alpha) * lay1);
/* d/dw, term2. converges to -y, for small alpha. */
dw -= y*(1+alpha) / ay1;
/* d/dw, term2. For tiny ay, use log(1+x) ~ x to simplify. */
if (fabs(ay) < 1e-12) dw += y*exp(-y);
else dw += y*exp(-(1+1/alpha) * lay1);
/* d/dalpha, term1
*/
dalpha -= (1 + 1/alpha) * y/ay1;
/* d/dalpha, terms 2,3,4: for tiny ay, simplify.
* d/dalpha will go to +/-inf for alpha ~ 0, so watch out.
*/
if (fabs(ay) < 1e-12) {
dalpha += y/alpha;
dalpha += y*exp(-y) / (alpha*ay1);
dalpha -= y*exp(-y) / alpha;
} else {
dalpha += lay1 / (alpha*alpha);
dalpha += y * exp(-lay1/alpha) / (alpha*ay1);
dalpha -= lay1 * exp(-lay1/alpha) / (alpha*alpha);
}
}
dmu *= lambda;
/* Add the terms that come from the censored data gradient,
* if it's a censored dataset.
*/
if (data->is_censored)
{
y = lambda * (data->phi - mu);
ay = alpha * y;
ay1 = 1 + ay;
lay1 = log(ay1);
if (fabs(ay) < 1e-12)
{ /* special case of small alpha, converging towards Gumbel */
dmu -= data->z * lambda * exp(-y) / ay1;
dw += data->z * y * exp(-y) / ay1;
dalpha -= data->z * exp(-y) * y/alpha * ay/ay1;
}
else
{ /* normal case */
dmu -= data->z * lambda * exp(-lay1/alpha) / ay1;
dw += data->z * y * exp(-lay1/alpha) / ay1;
dalpha -= data->z * exp(-lay1/alpha) *
(lay1/(alpha*alpha) - y/(alpha*ay1));
}
}
/* Return the negative gradient, because we're minimizing NLL,
* not maximizing LL.
*/
dp[0] = -dmu;
dp[1] = -dw;
dp[2] = -dalpha;
return;
}
/* fitting_engine()
* Fitting code shared by the FitComplete() and FitCensored() API.
*
* The fitting_engine(), in turn, is just an adaptor wrapped around
* the conjugate gradient descent minimizer.
*/
static int
fitting_engine(struct gev_data *data,
double *ret_mu, double *ret_lambda, double *ret_alpha)
{
ESL_MIN_CFG *cfg = NULL; /* customization of the optimizer */
double p[3]; /* parameter vector */
double mean, variance;
double mu, lambda, alpha; /* initial param guesses */
double fx; /* f(x) at minimum; currently unused */
int status;
/* Make an initial guess.
* (very good guess for complete data; merely sufficient for censored)
*/
esl_stats_DMean(data->x, data->n, &mean, &variance);
lambda = eslCONST_PI / sqrt(6.*variance);
mu = mean - 0.57722/lambda;
alpha = 0.0001;
p[0] = mu;
p[1] = log(lambda); /* c.o.v. from lambda to w */
p[2] = alpha;
/* customize the CG optimizer */
cfg = esl_min_cfg_Create(3);
cfg->cg_rtol = 1e-6;
/* max initial step sizes: keeps bracketing from exploding */
cfg->u[0] = 1.0;
cfg->u[1] = fabs(log(0.02));
cfg->u[2] = 0.02;
/* pass problem to the optimizer
*/
status = esl_min_ConjugateGradientDescent(cfg, p, 3,
&gev_func, &gev_gradient, (void *)data,
&fx, NULL);
esl_min_cfg_Destroy(cfg);
*ret_mu = p[0];
*ret_lambda = exp(p[1]);
*ret_alpha = p[2];
return status;
}
/* Function: esl_gev_FitComplete()
*
* Purpose: Given an array of <n> GEV-distributed samples <x[0]..x[n-1>,
* return maximum likelihood parameters <ret_mu>,
* <ret_lambda>, and <ret_alpha>.
*
* Uses a conjugate gradient descent algorithm that
* can be computationally intensive. A typical problem
* involving 10,000-100,000 points may take a second
* to solve.
*
* Note: Just a wrapper: sets up the problem for fitting_engine().
*
* Args: x - complete GEV-distributed data [0..n-1]
* n - number of samples in <x>
* ret_mu - RETURN: maximum likelihood estimate of mu
* ret_lambda - RETURN: maximum likelihood estimate of lambda
* ret_alpha - RETURN: maximum likelihood estimate of alpha
*
* Returns: <eslOK> on success.
*
* Throws: <eslENOHALT> if the fit doesn't converge.
*
* Xref: STL9/118-120.
*/
int
esl_gev_FitComplete(double *x, int n,
double *ret_mu, double *ret_lambda, double *ret_alpha)
{
struct gev_data data;
data.x = x;
data.n = n;
data.is_censored = FALSE;
data.phi = -DBL_MAX;
data.z = 0;
return (fitting_engine(&data, ret_mu, ret_lambda, ret_alpha));
}
/* Function: esl_gev_FitCensored()
*
* Purpose: Given a left-censored array of <n> GEV-distributed samples
* <x[0]..x[n-1>, the number of censored samples <z>, and
* the censoring value <phi> (where all $x_i > \phi$ and
* all $z$ censored samples are $\leq \phi$);
* return maximum likelihood parameters <ret_mu>,
* <ret_lambda>, and <ret_alpha>.
*
* Args: x - censored GEV-distributed data [0..n-1], all > phi
* n - number of samples in <x>
* z - number of censored samples, all <= phi
* phi - censoring threshold
* ret_mu - RETURN: maximum likelihood estimate of mu
* ret_lambda - RETURN: maximum likelihood estimate of lambda
* ret_alpha - RETURN: maximum likelihood estimate of alpha
*
* Note: Just a wrapper: sets up the problem for fitting_engine().
*
* Returns: <eslOK> on success.
*
* Throws: <eslENOHALT> if the fit doesn't converge.
*
* Xref: STL9/133
*/
int
esl_gev_FitCensored(double *x, int n, int z, double phi,
double *ret_mu, double *ret_lambda, double *ret_alpha)
{
struct gev_data data;
data.x = x;
data.n = n;
data.is_censored = TRUE;
data.phi = phi;
data.z = z;
return (fitting_engine(&data, ret_mu, ret_lambda, ret_alpha));
}
/*--------------------------- end fitting ----------------------------------*/
/****************************************************************************
* 6. Stats driver
****************************************************************************/
#ifdef eslGEV_STATS
#include <stdio.h>
#include <math.h>
#include "easel.h"
#include "esl_random.h"
#include "esl_minimizer.h"
#include "esl_gev.h"
#define MAX_STATS_TESTS 10
static void stats_sample(FILE *fp);
static int stats_fittest(FILE *fp, int ntrials, int n, double mu,
double lambda, double alpha);
int
main(int argc, char **argv)
{
FILE *fp;
double mu = 0.0;
double lambda = 1.0;
double xmin = -20.;
double xmax = 60.;
double xstep = 0.1;
double x,z;
int do_test[MAX_STATS_TESTS+1];
int i;
for (i = 0; i <= MAX_STATS_TESTS; i++) do_test[i] = 0;
for (i = 1; i < argc; i++)
do_test[atoi(argv[i])] = 1;
/* stats.1: xmgrace xy file w/ densities for Gumbel, Frechet, Weibull */
if (do_test[1]) {
if ((fp = fopen("stats.1", "w")) == NULL) abort();
for (x = xmin; x <= xmax; x+= xstep)
fprintf(fp, "%.1f %9.7f\n", x, esl_gev_pdf(x, mu, lambda, 0.0));
fprintf(fp, "&\n");
for (x = xmin; x <= xmax; x+= xstep)
fprintf(fp, "%.1f %9.7f\n", x, esl_gev_pdf(x, mu, lambda, 0.1));
fprintf(fp, "&\n");
for (x = xmin; x <= xmax; x+= xstep)
fprintf(fp, "%.1f %9.7f\n", x, esl_gev_pdf(x, mu, lambda, -0.1));
fprintf(fp, "&\n");
fclose(fp);
}
/* stats.2: xmgrace xy file w/ log densities for Gumbel, Frechet, Weibull */
if (do_test[2]) {
if ((fp = fopen("stats.2", "w")) == NULL) abort();
for (x = xmin; x <= xmax; x+= xstep) {
z = esl_gev_logpdf(x, mu, lambda, 0.0);
if (finite(z)) fprintf(fp, "%.1f %9.7f\n", x, z);
}
fprintf(fp, "&\n");
for (x = xmin; x <= xmax; x+= xstep) {
z = esl_gev_logpdf(x, mu, lambda, 0.1);
if (finite(z)) fprintf(fp, "%.1f %9.7f\n", x, z);
}
fprintf(fp, "&\n");
for (x = xmin; x <= xmax; x+= xstep) {
z = esl_gev_logpdf(x, mu, lambda, -0.1);
if (finite(z)) fprintf(fp, "%.1f %9.7f\n", x, z);
}
fprintf(fp, "&\n");
fclose(fp);
}
/* stats.3: xmgrace xy file w/ CDF for Gumbel, Frechet, Weibull */
if (do_test[3]) {
if ((fp = fopen("stats.3", "w")) == NULL) abort();
for (x = xmin; x <= xmax; x+= xstep)
fprintf(fp, "%.1f %9.7f\n", x, esl_gev_cdf(x, mu, lambda, 0.0));
fprintf(fp, "&\n");
for (x = xmin; x <= xmax; x+= xstep)
fprintf(fp, "%.1f %9.7f\n", x, esl_gev_cdf(x, mu, lambda, 0.6));
fprintf(fp, "&\n");
for (x = xmin; x <= xmax; x+= xstep)
fprintf(fp, "%.1f %9.7f\n", x, esl_gev_cdf(x, mu, lambda, -0.6));
fprintf(fp, "&\n");
fclose(fp);
}
/* stats.4: xmgrace xy file w/ logCDF for Gumbel, Frechet, Weibull */
if (do_test[4]) {
if ((fp = fopen("stats.4", "w")) == NULL) abort();
for (x = xmin; x <= xmax; x+= xstep) {
z = esl_gev_logcdf(x, mu, lambda, 0.0);
if (finite(z)) fprintf(fp, "%.1f %9.7f\n", x, z);
}
fprintf(fp, "&\n");
for (x = xmin; x <= xmax; x+= xstep) {
z = esl_gev_logcdf(x, mu, lambda, 0.2);
if (finite(z)) fprintf(fp, "%.1f %9.7f\n", x, z);
}
fprintf(fp, "&\n");
for (x = xmin; x <= xmax; x+= xstep) {
z = esl_gev_logcdf(x, mu, lambda, -0.2);
if (finite(z)) fprintf(fp, "%.1f %9.7f\n", x, z);
}
fprintf(fp, "&\n");
fclose(fp);
}
/* stats.5: xmgrace xy file w/ surv for Gumbel, Frechet, Weibull */
if (do_test[5]) {
if ((fp = fopen("stats.5", "w")) == NULL) abort();
for (x = xmin; x <= xmax; x+= xstep)
fprintf(fp, "%.1f %9.7f\n", x, esl_gev_surv(x, mu, lambda, 0.0));
fprintf(fp, "&\n");
for (x = xmin; x <= xmax; x+= xstep)
fprintf(fp, "%.1f %9.7f\n", x, esl_gev_surv(x, mu, lambda, 0.6));
fprintf(fp, "&\n");
for (x = xmin; x <= xmax; x+= xstep)
fprintf(fp, "%.1f %9.7f\n", x, esl_gev_surv(x, mu, lambda, -0.6));
fprintf(fp, "&\n");
fclose(fp);
}
/* stats.6: xmgrace xy file w/ logsurv for Gumbel, Frechet, Weibull */
if (do_test[6]) {
if ((fp = fopen("stats.6", "w")) == NULL) abort();
for (x = xmin; x <= xmax; x+= xstep) {
z = esl_gev_logsurv(x, mu, lambda, 0.0);
if (finite(z)) fprintf(fp, "%.1f %9.7f\n", x, z);
}
fprintf(fp, "&\n");
for (x = xmin; x <= xmax; x+= xstep) {
z = esl_gev_logsurv(x, mu, lambda, 0.2);
if (finite(z)) fprintf(fp, "%.1f %9.7f\n", x, z);
}
fprintf(fp, "&\n");
for (x = xmin; x <= xmax; x+= xstep) {
z = esl_gev_logsurv(x, mu, lambda, -0.2);
if (finite(z)) fprintf(fp, "%.1f %9.7f\n", x, z);
}
fprintf(fp, "&\n");
fclose(fp);
}
/* stats.7. R input file of 10,000 random GEV samples.
*/
if (do_test[7]) {
if ((fp = fopen("stats.7", "w")) == NULL) abort();
stats_sample(fp);
fclose(fp);
}
/* stats.8. Test 500 fits of the Frechet.
*/
if (do_test[8]) {
if ((fp = fopen("stats.8", "w")) == NULL) abort();
stats_fittest(fp, 500, 10000, mu, lambda, 0.2);
fclose(fp);
}
/* stats.9. Test 500 fits of the near-Gumbel
*/
if (do_test[9]) {
if ((fp = fopen("stats.9", "w")) == NULL) abort();
stats_fittest(fp, 500, 10000, mu, lambda, 0.00001);
fclose(fp);
}
/* stats.10. Test 500 fits of the Weibull
*/
if (do_test[10]) {
if ((fp = fopen("stats.10", "w")) == NULL) abort();
stats_fittest(fp, 500, 10000, mu, lambda, -0.2);
fclose(fp);
}
return 0;
}
/* stats_sample()
* Creates an R input table containing 10,000 random samples
* each in columns labeled "gumbel", "frechet", "weibull".
* To process in R (remember that R uses 1/lambda for scale):
library(ismev)
library(evd)
z=read.table("stats.7")
x1 <- sort(z$gumbel, decreasing=T)
x2 <- sort(z$frechet, decreasing=T)
x3 <- sort(z$weibull, decreasing=T)
q1 <- qgumbel(ppoints(10000), -20., 1./0.4)
q2 <- qgev(ppoints(10000), -20., 1./0.4, 0.2)
q3 <- qgev(ppoints(10000), -20., 1./0.4, -0.2)
xax<- seq(-40,40,by=0.1)
a1 <- dgumbel(xax, -20, 1/0.4)
a2 <- dgev(xax, -20, 1/0.4, 0.2)
a3 <- dgev(xax, -20, 1/0.4, -0.2)
qqplot(x1,q1); abline(0,1)
qqplot(x2,q2); abline(0,1)
qqplot(x3,q3); abline(0,1)
plot(density(x1,bw=0.2)); lines(xax,a1)
plot(density(x2,bw=0.2)); lines(xax,a2)
plot(density(x3,bw=0.2)); lines(xax,a3)
*/
static void
stats_sample(FILE *fp)
{
ESL_RANDOMNESS *r;
double mu = -20.;
double lambda = 0.4;
int n = 10000;
double a,b,c;
int i;
r = esl_randomness_Create(42);
fprintf(fp, " gumbel \t frechet\t weibull\n");
for (i = 1; i <= n; i++)
{
a = esl_gev_Sample(r, mu, lambda, 0.0);
b = esl_gev_Sample(r, mu, lambda, 0.2);
c = esl_gev_Sample(r, mu, lambda, -0.2);
fprintf(fp, "%d\t%8.4f\t%8.4f\t%8.4f\n", i, a,b,c);
}
esl_randomness_Destroy(r);
}
/* stats_fittest()
* Samples <n> numbers from a GEV w/ parameters <mu>, <lambda>, <alpha>;
* then fits to a GEV and print info about how good the fit is.
*
* Repeat this <ntrials> times.
*
* For each trial, outputs a line to <fp>:
* <trial> <nll> <est_nll> <est_mu> <mu %error> <est_lambda> <%err>\
* <est_alpha> <%err> <est E-val at parametric E=1>
*
* Each sampled set is done with the random number generator seeded to
* the trial number. This should make each set reproducible and
* identical to the sets used to test R's fitting.
*
* xref STL9/191; xref 2005/0718-weibull-debugging
*/
static int
stats_fittest(FILE *fp, int ntrials, int n, double mu, double lambda, double alpha)
{
ESL_RANDOMNESS *r = NULL;
double *x = NULL;
int i;
int trial;
double est_mu, est_lambda, est_alpha;
double z;
double nll, est_nll;
int status;
ESL_ALLOC(x, sizeof(double) * n);
for (trial = 1; trial <= ntrials; trial++)
{
r = esl_randomness_Create(trial);
nll = 0.;
for (i = 0; i < n; i++)
{
x[i] = esl_gev_Sample(r, mu, lambda, alpha);
nll -= esl_gev_logpdf(x[i], mu, lambda, alpha);
}
esl_randomness_Destroy(r);
esl_gev_FitComplete(x, n, &est_mu, &est_lambda, &est_alpha);
est_nll = 0.;
for (i = 0; i < n; i++)
est_nll -= esl_gev_logpdf(x[i], est_mu, est_lambda, est_alpha);
z = mu + (exp(-alpha*log(1/(double)n)) - 1 ) / (alpha*lambda);/* x at E=1*/
z = (double) n * esl_gev_surv(z, est_mu, est_lambda, est_alpha); /* E at x */
printf("%4d %10.2f %10.2f %8.3f %8.3f %8.5f %8.3f %8.5f %8.3f %6.4f\n",
trial, nll, est_nll,
est_mu, 100* fabs((est_mu-mu)/mu),
est_lambda, 100* fabs((est_lambda-lambda)/lambda),
est_alpha, 100* fabs((est_alpha-alpha)/alpha),
z);
}
free(x);
return eslOK;
ERROR:
return status;
}
#endif /*eslGEV_STATS*/
/*****************************************************************
* 7. Example
*****************************************************************/
#ifdef eslGEV_EXAMPLE
/*::cexcerpt::gev_example::begin::*/
#include <stdio.h>
#include "easel.h"
#include "esl_random.h"
#include "esl_minimizer.h"
#include "esl_gev.h"
int
main(int argc, char **argv)
{
double est_mu, est_lambda, est_alpha;
double z;
int i;
int n = 10000; /* simulate 10,000 samples */
double mu = -20.0; /* with mu = -20 */
double lambda = 0.4; /* and lambda = 0.4 */
double alpha = 0.1; /* and alpha = 0.1 */
double min = 9999.;
double max = -9999.;
double *x = malloc(sizeof(double) * n);
ESL_RANDOMNESS *r = esl_randomness_Create(0);;
for (i = 0; i < n; i++) /* generate the 10,000 samples */
{
x[i] = esl_gev_Sample(r, mu, lambda, alpha);
if (x[i] < min) min = x[i];
if (x[i] > max) max = x[i];
}
z = esl_gev_surv(max, mu, lambda, alpha); /* right tail p~1e-4 >= max */
printf("max = %6.1f P(>max) = %g E=%6.3f\n", max, z, z*(double)n);
z = esl_gev_cdf(min, mu, lambda, alpha); /* left tail p~1e-4 < min */
printf("min = %6.1f P(<=min) = %g E=%6.3f\n", min, z, z*(double)n);
esl_gev_FitComplete(x, n, &est_mu, &est_lambda, &est_alpha);
printf("Parametric mu = %6.1f. Estimated mu = %6.2f. Difference = %.1f%%.\n",
mu, est_mu, 100. * fabs((est_mu - mu) / mu));
printf("Parametric lambda = %6.2f. Estimated lambda = %6.2f. Difference = %.1f%%.\n",
lambda, est_lambda, 100. * fabs((est_lambda - lambda) /lambda));
printf("Parametric alpha = %6.4f. Estimated alpha = %6.4f. Difference = %.1f%%.\n",
alpha, est_alpha, 100. * fabs((est_alpha - alpha) /alpha));
free(x);
esl_randomness_Destroy(r);
return 0;
}
/*::cexcerpt::gev_example::end::*/
#endif /*eslGEV_EXAMPLE*/