Skip to content

Latest commit

 

History

History
978 lines (697 loc) · 37.7 KB

README.md

File metadata and controls

978 lines (697 loc) · 37.7 KB

English

VisualDL 使用指南

概述

VisualDL 是一个面向深度学习任务设计的可视化工具。VisualDL 利用了丰富的图表来展示数据,用户可以更直观、清晰地查看数据的特征与变化趋势,有助于分析数据、及时发现错误,进而改进神经网络模型的设计。

目前,VisualDL 支持 scalar, image, audio,graph, histogram, pr curve, ROC curve, high dimensional 七个组件,项目正处于高速迭代中,敬请期待新组件的加入。

组件名称 展示图表 作用
Scalar 折线图 动态展示损失函数值、准确率等标量数据
Image 图片可视化 显示图片,可显示输入图片和处理后的结果,便于查看中间过程的变化
Audio 音频可视化 播放训练过程中的音频数据,监控语音识别与合成等任务的训练过程
Text 文本可视化 展示文本任务任意阶段的数据输出,对比不同阶段的文本变化,便于深入了解训练过程及效果。
Graph 网络结构 展示网络结构、节点属性及数据流向,辅助学习、优化网络结构
Histogram 直方图 展示训练过程中权重、梯度等张量的分布
PR Curve 折线图 权衡精度与召回率之间的平衡关系
ROC Curve 折线图 展示不同阈值下的模型表现
High Dimensional 数据降维 将高维数据映射到 2D/3D 空间来可视化嵌入,便于观察不同数据的相关性

同时,VisualDL提供可视化结果保存服务,通过 VDL.service 生成链接,保存并分享可视化结果

Scalar--标量组件

介绍

Scalar 组件的输入数据类型为标量,该组件的作用是将训练参数以折线图形式呈现。将损失函数值、准确率等标量数据作为参数传入 scalar 组件,即可画出折线图,便于观察变化趋势。

记录接口

Scalar 组件的记录接口如下:

add_scalar(tag, value, step, walltime=None)

接口参数说明如下:

参数 格式 含义
tag string 记录指标的标志,如train/loss,不能含有%
value float 要记录的数据值
step int 记录的步数
walltime int 记录数据的时间戳,默认为当前时间戳

*注意tag的使用规则为:

  1. 第一个/前的为父tag,并作为一栏图片的tag
  2. 第一个/后的为子tag,子tag的对应图片将显示在父tag下
  3. 可以使用多次/,但一栏图片的tag依旧为第一个/前的tag

具体使用参见以下三个例子:

  • 创建train为父tag,acc和loss为子tag:train/acctrain/loss,即创建了tag为train的图片栏,包含acc和loss两张图表:

  • 创建train为父tag,test/acc和test/loss为子tag:train/test/acctrain/test/loss,即创建了tag为train的图片栏,包含test/acc和test/loss两张图表:

  • 创建两个父tag:accloss,即创建了tag分别为acc和loss的两个图表栏::

Demo

  • 基础使用

下面展示了使用 Scalar 组件记录数据的示例,代码见Scalar组件

from visualdl import LogWriter

if __name__ == '__main__':
    value = [i/1000.0 for i in range(1000)]
    # 初始化一个记录器
    with LogWriter(logdir="./log/scalar_test/train") as writer:
        for step in range(1000):
            # 向记录器添加一个tag为`acc`的数据
            writer.add_scalar(tag="acc", step=step, value=value[step])
            # 向记录器添加一个tag为`loss`的数据
            writer.add_scalar(tag="loss", step=step, value=1/(value[step] + 1))

运行上述程序后,在命令行执行

visualdl --logdir ./log --port 8080

接着在浏览器打开http://127.0.0.1:8080,即可查看以下折线图。

  • 多组实验对比

下面展示了使用Scalar组件实现多组实验对比

多组实验对比的实现分为两步:

  1. 创建子日志文件储存每组实验的参数数据
  2. 将数据写入scalar组件时,使用相同的tag,即可实现对比不同实验同一类型参数
from visualdl import LogWriter

if __name__ == '__main__':
    value = [i/1000.0 for i in range(1000)]
    # 步骤一:创建父文件夹:log与子文件夹:scalar_test
    with LogWriter(logdir="./log/scalar_test") as writer:
        for step in range(1000):
            # 步骤二:向记录器添加一个tag为`train/acc`的数据
            writer.add_scalar(tag="train/acc", step=step, value=value[step])
            # 步骤二:向记录器添加一个tag为`train/loss`的数据
            writer.add_scalar(tag="train/loss", step=step, value=1/(value[step] + 1))
    # 步骤一:创建第二个子文件夹scalar_test2       
    value = [i/500.0 for i in range(1000)]
    with LogWriter(logdir="./log/scalar_test2") as writer:
        for step in range(1000):
            # 步骤二:在同样名为`train/acc`下添加scalar_test2的accuracy的数据
            writer.add_scalar(tag="train/acc", step=step, value=value[step])
            # 步骤二:在同样名为`train/loss`下添加scalar_test2的loss的数据
            writer.add_scalar(tag="train/loss", step=step, value=1/(value[step] + 1))

运行上述程序后,在命令行执行

visualdl --logdir ./log --port 8080

接着在浏览器打开http://127.0.0.1:8080,即可查看以下折线图,观察scalar_test和scalar_test2的accuracy和loss的对比。

*多组实验对比的应用案例可参考AI Studio项目:VisualDL 2.0--眼疾识别训练可视化

功能操作说明

  • 支持数据卡片「最大化」、「还原」、「坐标系转化」(y轴对数坐标)、「下载」折线图

  • 数据点Hover展示详细信息

  • 可搜索卡片标签,展示目标图像

  • 可搜索打点数据标签,展示特定数据

  • 选择显示最值,展示最大最小值以及对应的训练步数

  • 选择仅显示平滑后的数据

  • X轴有三种衡量尺度
  1. Step:迭代次数
  2. Walltime:训练绝对时间
  3. Relative:训练时长

* 可调整曲线平滑度,以便更好的展现参数整体的变化趋势

Image--图片可视化组件

介绍

Image 组件用于显示图片数据随训练的变化。在模型训练过程中,将图片数据传入 Image 组件,就可在 VisualDL 的前端网页查看相应图片。

记录接口

Image 组件的记录接口如下:

add_image(tag, img, step, walltime=None, dataformats="HWC")

接口参数说明如下:

参数 格式 含义
tag string 记录指标的标志,如train/loss,不能含有%
img numpy.ndarray 以ndarray格式表示的图片
step int 记录的步数
walltime int 记录数据的时间戳,默认为当前时间戳
dataformats string 传入的图片格式,包括NCHWHWCHW,默认为HWC

Demo

下面展示了使用 Image 组件记录数据的示例,代码文件请见Image组件

import numpy as np
from PIL import Image
from visualdl import LogWriter


def random_crop(img):
    """获取图片的随机 100x100 分片
    """
    img = Image.open(img)
    w, h = img.size
    random_w = np.random.randint(0, w - 100)
    random_h = np.random.randint(0, h - 100)
    r = img.crop((random_w, random_h, random_w + 100, random_h + 100))
    return np.asarray(r)


if __name__ == '__main__':
    # 初始化一个记录器
    with LogWriter(logdir="./log/image_test/train") as writer:
        for step in range(6):
            # 添加一个图片数据
            writer.add_image(tag="eye",
                             img=random_crop("../../docs/images/eye.jpg"),
                             step=step)

运行上述程序后,在命令行执行

visualdl --logdir ./log --port 8080

在浏览器输入http://127.0.0.1:8080,即可查看图片数据。

功能操作说明

  • 可搜索图片标签显示对应图片数据

  • 支持滑动Step/迭代次数查看不同迭代次数下的图片数据

添加图片矩阵

除使用add_image记录一张图片之外,还可以使用add_image_matrix一次添加多张图片并生成一张图片矩阵,接口及参数说明如下: add_image_matrix的记录接口如下:

add_image_matrix(tag, imgs, step, rows=-1, scale=1, walltime=None, dataformats="HWC")

接口参数说明如下:

参数 格式 含义
tag string 记录指标的标志,如train/loss,不能含有%
imgs numpy.ndarray 以ndarray格式表示的多张图片,第一维为图片的数量
step int 记录的步数
rows int 生成图片矩阵的行数,默认值为-1,表示尽量把传入的图片组合成行列数相近的形式
scale int 图片放大比例,默认为1
walltime int 记录数据的时间戳,默认为当前时间戳
dataformats string 传入的图片格式,包括NCHWHWCHW,默认为HWC

PS:当给定的子图像数量不足时,将用空白图像填充,以保证生成的图形为完整矩形

Demo

下面展示了使用 Image 组件合成并记录多张图片数据的示例,代码文件请见Image组件

import numpy as np
from PIL import Image
from visualdl import LogWriter


if __name__ == '__main__':
    imgs = []
    for index in range(6):
        imgs.append(np.asarray(Image.open("../../docs/images/images_matrix/%s.jpg" % str((index)))))

    with LogWriter(logdir='./log/image_matrix_test/train') as writer:
        writer.add_image(tag='detection', step=0, img=imgs[0])
        # 合成长宽尽量接近的图形矩阵,本例生成3X2的矩阵
        writer.add_image_matrix(tag='detection', step=1, imgs=imgs, rows=-1)
        # 合成长为1的图形矩阵,本例生成1x6的矩阵
        writer.add_image_matrix(tag='detection', step=2, imgs=imgs, rows=1)
        # 合成长为2的图形矩阵,本例生成2X3的矩阵
        writer.add_image_matrix(tag='detection', step=3, imgs=imgs, rows=2)
        # 合成长为3的图形矩阵,本例生成3X2的矩阵
        writer.add_image_matrix(tag='detection', step=4, imgs=imgs, rows=3)
        # 合成长为4的图形矩阵,本例生成4X2的矩阵,自动补充子图像填充第四行
        writer.add_image_matrix(tag='detection', step=5, imgs=imgs, rows=4)

运行上述程序后,在命令行执行

visualdl --logdir ./log --port 8080

在浏览器输入http://127.0.0.1:8080,即可查看图片数据。

Audio--音频播放组件

介绍

Audio组件实时查看训练过程中的音频数据,监控语音识别与合成等任务的训练过程。

记录接口

Audio 组件的记录接口如下:

add_audio(tag, audio_array, step, sample_rate)

接口参数说明如下:

参数 格式 含义
tag string 记录指标的标志,如audio_tag,不能含有%
audio_arry numpy.ndarray 以ndarray格式表示的音频
step int 记录的步数
sample_rate int 采样率,注意正确填写对应音频的采样率

Demo

下面展示了使用 Audio 组件记录数据的示例,代码文件请见Audio组件

from visualdl import LogWriter
from scipy.io import wavfile


if __name__ == '__main__':
    with LogWriter(logdir="./log/audio_test/train") as writer:
        sample_rate, audio_data = wavfile.read('./test.wav')
        writer.add_audio(tag="audio_tag",
                         audio_array=audio_data,
                         step=0,
                         sample_rate=sample_rate)

运行上述程序后,在命令行执行

visualdl --logdir ./log --port 8080

在浏览器输入http://127.0.0.1:8080,即可查看音频数据。

功能操作说明

  • 可搜索音频标签显示对应音频数据

  • 支持滑动Step/迭代次数查看不同迭代次数下的音频数据

  • 支持播放/暂停音频数据

  • 支持音量调节

  • 支持音频下载

Text--文本组件

介绍

Text展示文本任务任意阶段的数据输出,对比不同阶段的文本变化,便于深入了解训练过程及效果。

记录接口

Text组件的记录接口如下:

add_text(self, tag, text_string, step=None, walltime=None)

接口参数说明如下:

参数 格式 含义
tag string 记录指标的标志,如train/loss,不能含有%
text_string string 文本字符串
step int 记录的步数
walltime int 记录数据的时间戳,默认为当前时间戳

Demo

下面展示了使用 Text 组件记录数据的示例,代码见Text组件

from visualdl import LogWriter
if __name__ == '__main__':
    texts = [
        '上联: 众 佛 群 灵 光 圣 地	下联: 众 生 一 念 证 菩 提',
        '上联: 乡 愁 何 处 解	下联: 故 事 几 时 休',
        '上联: 清 池 荷 试 墨	下联: 碧 水 柳 含 情',
        '上联: 既 近 浅 流 安 笔 砚	下联: 欲 将 直 气 定 乾 坤',
        '上联: 日 丽 萱 闱 祝 无 量 寿	下联: 月 明 桂 殿 祝 有 余 龄',
        '上联: 一 地 残 红 风 拾 起	下联: 半 窗 疏 影 月 窥 来'
    ]
    with LogWriter(logdir="./log/text_test/train") as writer:
        for step in range(len(texts)):
            writer.add_text(tag="output", step=step, text_string=texts[step])

运行上述程序后,在命令行执行

visualdl --logdir ./log --port 8080

接着在浏览器打开http://127.0.0.1:8080,即可查看Text

功能操作说明

  • 可搜索文本标签显示对应文本数据

  • 可搜索数据流标签显示对应数据流数据

  • 可折叠标签

Graph--网络结构组件

介绍

Graph组件一键可视化模型的网络结构。用于查看模型属性、节点信息、节点输入输出等,并进行节点搜索,协助开发者们快速分析模型结构与了解数据流向。

Demo

共有两种启动方式:

  • 前端启动Graph:

    • 如只需使用Graph,无需添加任何参数,在命令行执行visualdl后即可启动。
    • 如果同时需使用其他功能,在命令行指定日志文件路径(以./log为例),即可启动:
    visualdl --logdir ./log --port 8080
  • 后端启动Graph:

    • 在命令行加入参数--model并指定模型文件路径(非文件夹路径),即可启动:
    visualdl --model ./log/model --port 8080

*Graph目前只支持可视化网络结构格式的模型文件(如__model__(注意此处为两个下划线'_'))

启动后即可查看网络结构可视化:

功能操作说明

  • 一键上传模型
    • 支持模型格式:PaddlePaddle、ONNX、Keras、Core ML、Caffe、Caffe2、Darknet、MXNet、ncnn、TensorFlow Lite
    • 实验性支持模型格式:TorchScript、PyTorch、Torch、 ArmNN、BigDL、Chainer、CNTK、Deeplearning4j、MediaPipe、ML.NET、MNN、OpenVINO、Scikit-learn、Tengine、TensorFlow.js、TensorFlow

  • 支持上下左右任意拖拽模型、放大和缩小模型

  • 搜索定位到对应节点

  • 点击查看模型属性

  • 支持选择模型展示的信息

  • 支持以PNG、SVG格式导出文件

  • 点击节点即可展示对应属性信息

  • 支持一键更换模型

Histogram--直方图组件

介绍

Histogram组件以直方图形式展示Tensor(weight、bias、gradient等)数据在训练过程中的变化趋势。深入了解模型各层效果,帮助开发者精准调整模型结构。

记录接口

Histogram 组件的记录接口如下:

add_histogram(tag, values, step, walltime=None, buckets=10)

接口参数说明如下:

参数 格式 含义
tag string 记录指标的标志,如train/loss,不能含有%
values numpy.ndarray or list 以ndarray或list格式表示的数据
step int 记录的步数
walltime int 记录数据的时间戳,默认为当前时间戳
buckets int 生成直方图的分段数,默认为10

Demo

下面展示了使用 Histogram组件记录数据的示例,代码见Histogram组件

from visualdl import LogWriter
import numpy as np


if __name__ == '__main__':
    values = np.arange(0, 1000)
    with LogWriter(logdir="./log/histogram_test/train") as writer:
        for index in range(1, 101):
            interval_start = 1 + 2 * index / 100.0
            interval_end = 6 - 2 * index / 100.0
            data = np.random.uniform(interval_start, interval_end, size=(10000))
            writer.add_histogram(tag='default tag',
                                 values=data,
                                 step=index,
                                 buckets=10)

运行上述程序后,在命令行执行

visualdl --logdir ./log --port 8080

在浏览器输入http://127.0.0.1:8080,即可查看训练参数直方图。

功能操作说明

  • 支持数据卡片「最大化」、「下载」直方图

  • 可选择Offset或Overlay模式

    • Offset模式

    • Overlay模式

  • 数据点Hover展示参数值、训练步数、频次

    • 在第240次训练步数时,权重为-0.0031,且出现的频次是2734次

  • 可搜索卡片标签,展示目标直方图

  • 可搜索打点数据标签,展示特定数据流

PR Curve--PR曲线组件

介绍

PR Curve以折线图形式呈现精度与召回率的权衡分析,清晰直观了解模型训练效果,便于分析模型是否达到理想标准。

记录接口

PR Curve组件的记录接口如下:

add_pr_curve(tag, labels, predictions, step=None, num_thresholds=10)

接口参数说明如下:

参数 格式 含义
tag string 记录指标的标志,如train/loss,不能含有%
labels numpy.ndarray or list 以ndarray或list格式表示的实际类别
predictions numpy.ndarray or list 以ndarray或list格式表示的预测类别
step int 记录的步数
num_thresholds int 阈值设置的个数,默认为10,最大值为127
weights float 用于设置TP/FP/TN/FN在计算precision和recall时的权重
walltime int 记录数据的时间戳,默认为当前时间戳

Demo

下面展示了使用 PR Curve 组件记录数据的示例,代码见PR Curve组件

from visualdl import LogWriter
import numpy as np

with LogWriter("./log/pr_curve_test/train") as writer:
    for step in range(3):
        labels = np.random.randint(2, size=100)
        predictions = np.random.rand(100)
        writer.add_pr_curve(tag='pr_curve',
                            labels=labels,
                            predictions=predictions,
                            step=step,
                            num_thresholds=5)

运行上述程序后,在命令行执行

visualdl --logdir ./log --port 8080

接着在浏览器打开http://127.0.0.1:8080,即可查看PR Curve

功能操作说明

  • 支持数据卡片「最大化」、「还原」、「下载」PR曲线

  • 数据点Hover展示详细信息:阈值对应的TP、TN、FP、FN

  • 可搜索卡片标签,展示目标图表

  • 可搜索打点数据标签,展示特定数据

  • 支持查看不同训练步数下的PR曲线

  • X轴-时间显示类型有三种衡量尺度

    • Step:迭代次数
    • Walltime:训练绝对时间
    • Relative:训练时长

ROC Curve--ROC曲线组件

介绍

ROC曲线展示不同阈值下模型指标的变化,同时曲线下的面积(AUC)直观的反应模型表现,辅助开发者掌握模型训练情况并高效进行阈值选择。

记录接口

ROC Curve组件的记录接口如下:

add_roc_curve(tag, labels, predictions, step=None, num_thresholds=10)

接口参数说明如下:

参数 格式 含义
tag string 记录指标的标志,如train/loss,不能含有%
labels numpy.ndarray or list 以ndarray或list格式表示的实际类别
predictions numpy.ndarray or list 以ndarray或list格式表示的预测类别
step int 记录的步数
num_thresholds int 阈值设置的个数,默认为10,最大值为127
weights float 用于设置TP/FP/TN/FN在计算precision和recall时的权重
walltime int 记录数据的时间戳,默认为当前时间戳

Demo

下面展示了使用 ROC Curve 组件记录数据的示例,代码见ROC Curve组件

from visualdl import LogWriter
import numpy as np

with LogWriter("./log/roc_curve_test/train") as writer:
    for step in range(3):
        labels = np.random.randint(2, size=100)
        predictions = np.random.rand(100)
        writer.add_roc_curve(tag='roc_curve',
                             labels=labels,
                             predictions=predictions,
                             step=step,
                             num_thresholds=5)

运行上述程序后,在命令行执行

visualdl --logdir ./log --port 8080

接着在浏览器打开http://127.0.0.1:8080,即可查看ROC Curve

*Note:ROC前端页面使用和PR相同,请参考上述PR Curve的使用说明。

High Dimensional--数据降维组件

介绍

High Dimensional 组件将高维数据进行降维展示,用于深入分析高维数据间的关系。目前支持以下两种降维算法:

  • PCA : Principle Component Analysis 主成分分析
  • t-SNE : t-distributed stochastic neighbor embedding t-分布式随机领域嵌入
  • umap: uniform manifold approximation and projection for dimension reduction 流形学习降维算法

记录接口

High Dimensional 组件的记录接口如下:

add_embeddings(tag, labels, hot_vectors, walltime=None)

接口参数说明如下:

参数 格式 含义
tag string 记录指标的标志,如default,不能含有%
labels numpy.array 或 list 一维数组表示的标签,代表hot_vectors的标签,如果有多个维度的labels需要使用二维数组,其中每个元素为某维度下的一维标签数组
hot_vectors numpy.array or list 与labels一一对应,每个元素可以看作是某个标签的特征
labels_meta numpy.array or list labels的标签,与labels一一对应,不指定则使用默认值__metadata__,当labels为一维数组时无需指定
walltime int 记录数据的时间戳,默认为当前时间戳

Demo

下面展示了使用 High Dimensional 组件记录数据的示例,代码见High Dimensional组件

from visualdl import LogWriter


if __name__ == '__main__':
    hot_vectors = [
        [1.3561076367500755, 1.3116267195134017, 1.6785401875616097],
        [1.1039614644440658, 1.8891609992484688, 1.32030488587171],
        [1.9924524852447711, 1.9358920727142739, 1.2124401279391606],
        [1.4129542689796446, 1.7372166387197474, 1.7317806077076527],
        [1.3913371800587777, 1.4684674577930312, 1.5214136352476377]]

    labels = ["label_1", "label_2", "label_3", "label_4", "label_5"]
    # 初始化一个记录器
    with LogWriter(logdir="./log/high_dimensional_test/train") as writer:
        # 将一组labels和对应的hot_vectors传入记录器进行记录
        writer.add_embeddings(tag='default',
                              labels=labels,
                              hot_vectors=hot_vectors)
    """
    # 也可以同时提供多个label,此时`labels`为二维数组,且需要提供`labels_meta`以供前端页面选择展示不同label.
    labels = [["label_a_1", "label_a_2", "label_a_3", "label_a_4", "label_a_5"],
              ["label_b_1", "label_b_2", "label_b_3", "label_b_4", "label_b_5"]]
    # labels_meta需要和labels一一对应
    labels_meta = ["label_a", "label_b"]
    with LogWriter(logdir="./log/high_dimensional_test/train") as writer:
        writer.add_embeddings(tag='default',
                              labels=labels,
                              labels_meta=labels_meta,
                              hot_vectors=hot_vectors)
    """

运行上述程序后,在命令行执行

visualdl --logdir ./log --port 8080

接着在浏览器打开http://127.0.0.1:8080,即可查看降维后的可视化数据。

功能操作说明

  • 支持选择特定实验数据进行展示,且支持根据所选择的数据标签进行展示

  • 降维方式--TSNE

  • 降维方式--PCA

  • 降维方式--UMAP

VDL.service

简介

VisualDL可视化结果保存服务,以链接形式将可视化结果保存下来,方便用户快速、便捷的进行托管与分享。

使用步骤

  1. 确保VisualDL已升级到最新版本,如未升级,请使用以下命令进行升级
pip install visualdl --upgrade

  1. 上传需保存/分享的日志/模型文件
visualdl service upload --logdir ./log \
                        --model ./__model__
  1. VDL.service将返回一个URL链接,复制粘贴链接至浏览器中即可查看可视化结果